dantro.plot.funcs package#

Plotting functions that can be used by the PyPlotCreator and derived plot creators.


dantro.plot.funcs._multiplot module#

Implements config-configurable function invocation that can be used for applying function calls to a plot. This is used in multiplot() plot and the _hlpr_call() helper function.

MULTIPLOT_FUNC_KINDS = {'plt.bar': <function bar>, 'plt.barh': <function barh>, 'plt.contour': <function contour>, 'plt.errorbar': <function errorbar>, 'plt.fill': <function fill>, 'plt.hist': <function hist>, 'plt.hist2d': <function hist2d>, 'plt.imshow': <function imshow>, 'plt.loglog': <function loglog>, 'plt.pcolormesh': <function pcolormesh>, 'plt.pie': <function pie>, 'plt.plot': <function plot>, 'plt.polar': <function polar>, 'plt.quiver': <function quiver>, 'plt.scatter': <function scatter>, 'plt.semilogx': <function fill>, 'plt.semilogy': <function semilogy>, 'plt.streamplot': <function streamplot>, 'plt.table': <function table>, 'sns.barplot': <function barplot>, 'sns.boxenplot': <function boxenplot>, 'sns.boxplot': <function boxplot>, 'sns.countplot': <function countplot>, 'sns.despine': <function despine>, 'sns.ecdfplot': <function ecdfplot>, 'sns.heatmap': <function heatmap>, 'sns.histplot': <function histplot>, 'sns.kdeplot': <function kdeplot>, 'sns.lineplot': <function lineplot>, 'sns.pointplot': <function pointplot>, 'sns.regplot': <function regplot>, 'sns.residplot': <function residplot>, 'sns.rugplot': <function rugplot>, 'sns.scatterplot': <function scatterplot>, 'sns.stripplot': <function stripplot>, 'sns.swarmplot': <function swarmplot>, 'sns.violinplot': <function violinplot>}#

The default-available plot kinds for the multiplot() function.

Details of the seaborn-related plots can be found here in the seaborn docs.

MULTIPLOT_CAUTION_FUNC_NAMES = ('sns.scatterplot', 'sns.lineplot', 'sns.histplot', 'sns.kdeplot', 'sns.ecdfplot', 'sns.rugplot', 'sns.stripplot', 'sns.swarmplot', 'sns.boxplot', 'sns.violinplot', 'sns.boxenplot', 'sns.pointplot', 'sns.barplot', 'sns.countplot', 'sns.regplot', 'sns.residplot', 'sns.heatmap', 'plt.fill', 'plt.scatter', 'plt.plot', 'plt.polar', 'plt.loglog', 'plt.semilogx', 'plt.semilogy', 'plt.errorbar', 'plt.hist', 'plt.hist2d', 'plt.bar', 'plt.barh', 'plt.pie', 'plt.table', 'plt.imshow', 'plt.pcolormesh', 'plt.contour', 'plt.quiver', 'plt.streamplot')#

The multiplot functions that emit a warning if they do not get any arguments when called. This is helpful for functions that e.g. require a data argument but do not fail or warn if no such argument is passed on to them.

parse_function_specs(*, _hlpr: PlotHelper, _funcs: Dict[str, Callable] = None, _shared_kwargs: dict = {}, function: Union[str, Callable, Tuple[str, str]], args: list = None, pass_axis_object_as: str = None, pass_helper: bool = False, **func_kwargs) Tuple[str, Callable, list, dict][source]#

Parses a function specification used in the invoke_function helper. If function is a string it is looked up from the _funcs dict.

See parse_and_invoke_function() and multiplot().

  • _hlpr (PlotHelper) – The currently used PlotHelper instance

  • _funcs (Dict[str, Callable]) – The lookup dictionary for callables

  • _shared_kwargs (dict, optional) – Shared kwargs that passed on to all multiplot functions. They are recursively updated with the individual plot functions’ func_kwargs.

  • function (Union[str, Callable, Tuple[str, str]]) – The callable function object or the name of the plot function to look up. If given as 2-tuple (module, name), will attempt an import of that module.

  • args (list, optional) – The positional arguments for the plot function

  • pass_axis_object_as (str, optional) – If given, will add a keyword argument with this name to pass the current axis object to the to-be-invoked function.

  • pass_helper (bool, optional) – If true, passes the helper instance to the function call as keyword argument hlpr.

  • **func_kwargs (dict) – The function kwargs to be passed on to the function object.


A tuple of function name, callable,

positional arguments, and keyword arguments.

Return type

Tuple[str, Callable, list, dict]

parse_and_invoke_function(*, hlpr: PlotHelper, shared_kwargs: dict, func_kwargs: dict, show_hints: bool, call_num: int, funcs: Dict[str, Callable] = None, caution_func_names: List[str] = None) Any[source]#

Parses function arguments and then calls multiplot().

  • hlpr (PlotHelper) – The currently used PlotHelper instance

  • funcs (Dict[str, Callable], optional) – The lookup dictionary for the plot functions. If not given, will use a default lookup dictionary with a set of seaborn and matplotlib functions.

  • shared_kwargs (dict) – Arguments shared between function calls

  • func_kwargs (dict) – Arguments for this function in particular

  • show_hints (bool) – Whether to show hints

  • call_num (int) – The number of this plot, for easier identification

  • caution_func_names (List[str], optional) – a list of function names that will trigger a log message if no function kwargs were given. If not explicitly given, will use some defaults.


return value of plot function call

Return type


dantro.plot.funcs._utils module#

A module that implements a bunch of plot utilities used in the plotting functions. These can be shared tools between the plotting functions.

plot_errorbar(*, ax, x: ndarray, y: ndarray, yerr: ndarray, fill_between: bool = False, fill_between_kwargs: Optional[dict] = None, **errorbar_kwargs)[source]#

Given the data and (optionally) the y-error data, plots a single errorbar line. With fill_between=True, a shaded area is plotted instead of the errorbar markers.

The following fill_between_kwargs defaults are assumed:

  • color = line_color

  • alpha = 0.2 * line_alpha

  • lw = 0.

  • ax – The axis to plot on

  • x (ndarray) – The x data to use

  • y (ndarray) – The y-data to use for ax.errorbar. Needs to be 1D and have coordinates associated which will be used for the x-values.

  • yerr (ndarray) – The y-error data

  • fill_between (bool, optional) – Whether to use plt.fill_between or plt.errorbar to plot y-errors

  • fill_between_kwargs (dict, optional) – Passed on to plt.fill_between

  • **errorbar_kwargs – Passed on to plt.errorbar


ValueError – On non-1D data


The matplotlib legend handle of the errorbar line or of the errorbands

dantro.plot.funcs.basic module#

Holds basic plot functions for use with PyPlotCreator

lineplot(dm: DataManager, *, out_path: str, y: str, x: Optional[str] = None, fmt: Optional[str] = None, save_kwargs: Optional[dict] = None, **plot_kwargs)[source]#

Performs a simple lineplot using matplotlib.pyplot.plot().

  • dm (DataManager) – The data manager from which to retrieve the data

  • out_path (str) – Where to store the plot to

  • y (str) – The path to get to the y-data from the data tree

  • x (str, optional) – The path to get to the x-data from the data tree

  • save_kwargs (dict, optional) – Keyword arguments for matplotlib.pyplot.savefig()

  • **plot_kwargs – Passed on to matplotlib.pyplot.plot().

dantro.plot.funcs.generic module#

Generic, DAG-based plot functions for the PyPlotCreator and derived plot creators.

_XR_PLOT_KINDS = {'contour': ('x', 'y', 'col', 'row'), 'contourf': ('x', 'y', 'col', 'row'), 'hist': (), 'imshow': ('x', 'y', 'col', 'row'), 'line': ('x', 'hue', 'col', 'row'), 'pcolormesh': ('x', 'y', 'col', 'row'), 'scatter': ('hue', 'col', 'row'), 'step': ('x', 'col', 'row')}#

The available plot kinds for the xarray plotting interface, together with the supported layout specifier keywords.

_FACET_GRID_KINDS = {'contour': ('x', 'y', 'col', 'row', 'frames'), 'contourf': ('x', 'y', 'col', 'row', 'frames'), 'errorbars': ('x', 'hue', 'col', 'row', 'frames'), 'hist': ('frames',), 'imshow': ('x', 'y', 'col', 'row', 'frames'), 'line': ('x', 'hue', 'col', 'row', 'frames'), 'pcolormesh': ('x', 'y', 'col', 'row', 'frames'), 'scatter': ('hue', 'col', 'row', 'frames'), 'scatter3d': ('hue', 'markersize', 'col', 'row', 'frames'), 'step': ('x', 'col', 'row', 'frames')}#

The available plot kinds for the dantro plotting interface, together with the supported layout specifiers, which include the frames option.

_AUTO_PLOT_KINDS = {1: 'line', 2: 'pcolormesh', 3: 'pcolormesh', 4: 'pcolormesh', 5: 'pcolormesh', 'with_hue': 'line', 'with_x_and_y': 'pcolormesh', 'dataset': 'scatter', 'fallback': 'hist'}#

A mapping from data dimensionality to preferred plot kind, used in automatic plot kind selection. This assumes the specifiers of _FACET_GRID_KINDS

_FACET_GRID_FUNCS: Dict[str, Callable] = {'errorbars': <function make_facet_grid_plot.__call__.<locals>.fgplot>, 'scatter3d': <function make_facet_grid_plot.__call__.<locals>.fgplot>}#

A dict mapping additional facet grid kinds to callables. This is populated by the make_facet_grid_plot decorator.

determine_plot_kind(d: Union[DataArray, Dataset], *, kind: Union[str, dict], default_kind_map: dict = {1: 'line', 2: 'pcolormesh', 3: 'pcolormesh', 4: 'pcolormesh', 5: 'pcolormesh', 'with_hue': 'line', 'with_x_and_y': 'pcolormesh', 'dataset': 'scatter', 'fallback': 'hist'}, **plot_kwargs) str[source]#

Determines the plot kind to use for the given data. If kind: auto, this will determine the plot kind depending on the dimensionality of the data and other (potentially fixed) encoding specifiers. Otherwise, it will simply return kind.

What if layout encodings were partly fixed? There are two special cases where this is of relevance, and both these cases are covered explicitly:

  • If both x and y are given, line- or hist-like plot kinds are no longer possible; hence, a pcolormesh-like kind has to be chosen.

  • In turn, if hue was given, pcolormesh-like plot kinds are no longer applicable, thus a line-like argument needs to be chosen.

These two special cases are specified via the extra keys with_x_and_y and with_hue in the kind mapping.

A kind mapping may look like this:

1:               "line",
2:               "pcolormesh",
3:               "pcolormesh",
4:               "pcolormesh",
5:               "pcolormesh",
"with_hue":      "line",         # used when `hue` is explicitly set
"with_x_and_y":  "pcolormesh",   # used when _both_ `x` and `y` were set
"dataset":       "scatter",      # used for xr.Dataset-like data
"fallback":      "hist",         # used when none of the above matches
  • d (Union[DataArray, Dataset]) – The data for which to determine the plot kind.

  • kind (Union[str, dict]) – The given kind argument. If it is auto, the kind_map is used to determine the kind from the dimensionality of d. If it is a dict, auto is implied and the dict is assumed to be a (ndim -> kind) mapping, updating the default_kind_map.

  • default_kind_map (dict, optional) – The default mapping to use for kind: auto, with keys being d’s dimensionality and values being the plot kind to use. There are two special keys, fallback and dataset. The value belonging to dataset is used for data that is dataset- like, i.e. does not have an ndim attribute. The value of fallback specifies the plot kind for data dimensionalities that match no other key.

  • **plot_kwargs – All remaining plot function arguments, including any layout encoding arguments that aim to fix a dimension; these are used to determine the with_hue and with_x_and_y special cases. Everything else is ignored.


The selected plot kind. This is equal to the given kind if

it was None or a string unequal to auto.

Return type


determine_encoding(dims: Union[List[str], Dict[str, int]], *, kind: str, auto_encoding: Union[bool, dict], default_encodings: dict, allow_y_for_x: List[str] = ('line',), plot_kwargs: dict) dict[source]#

Determines the layout encoding for the given plot kind and the available data dimensions (as specified by the dims argument).

If auto_encoding does not evaluate to true or kind is None, this function does nothing and simply returns all given plotting arguments.

Otherwise, it uses the chosen plot kind to associate layout specifiers with dimension names of d. The available layout encoding specifiers (x, y, col etc.) can be specified in two ways:

  • By default, default_encodings is used as a map from plot kind to a sequence of available layout specifiers.

  • If auto_encoding is a dictionary, the default map will be updated with that dictionary.

The association is done in the following way:

  1. Inspecting plot_kwargs, all layout encoding specifiers are extracted, dropping those that evaluate to False.

  2. The encodings mapping is determined (see above).

  3. The available dimension names are determined from dims.

  4. Depending on kind and the already fixed specifiers, the free encoding specifiers and dimension names are extracted.

  5. These free specifiers are associated with free dimension names, in order of descending dimension size.

Example: Assume, the available specifiers are ('x', 'y', 'col') and the data has dimensions dim0, dim1 and dim2. Let’s further say that y was already fixed to dim2, leaving x and col as free specifiers and dim0 and dim1 as free dimensions. With x being specified before col in the list of available specifiers, x would be associated to the remaining dimension with the larger size and col to the remaining one.

An encodings mapping may look like this:

"scatter":      ("hue", "col", "row"),
"line":         ("x", "hue", "col", "row"),
"step":         ("x", "col", "row"),
"contourf":     ("x", "y", "col", "row"),
"contour":      ("x", "y", "col", "row"),
"imshow":       ("x", "y", "col", "row"),
"pcolormesh":   ("x", "y", "col", "row"),
"hist":         (),

This function also implements automatic column wrapping, aiming to produce a more square-like figure with column wrapping. The prerequisites are the following:

  • The dims argument is a dict, containing size information

  • The col_wrap argument is given and set to "auto"

  • The col specifier is in use

  • The row specifier is not used, i.e. wrapping is possible

  • There are more than three columns

In such a case, col_wrap will be set to ceil(sqrt(num_cols)). Otherwise, the entry will be removed from the plot arguments.

  • dims (Union[List[str], Dict[str, int]]) – The dimension names (and, if given as dict: their sizes) that are to be encoded. If no sizes are provided, the assignment order will be the same as in the given sequence of dimension names. If sizes are given, these will be used to sort the dimension names in descending order of their sizes.

  • kind (str) – The chosen plot kind. If this was None, will directly return, because auto-encoding information is missing.

  • auto_encoding (Union[bool, dict]) – Whether to perform auto-encoding. If a dict, will regard it as a mapping of available encodings and update default_encodings.

  • default_encodings (dict) – A map from plot kinds to available layout specifiers, e.g. {"line": ("x", "hue", "col", "row")}.

  • allow_y_for_x (List[str], optional) – A list of plot kinds for which the following replacement will be allowed: if a y specifier is given but no x specifier, the "x" in the list of available encodings will be replaced by a "y". This is to support plots that allow either an x or a y specifier, like the line kind.

  • plot_kwargs (dict) – The actual plot function arguments, including any layout encoding arguments that aim to fix a dimension. Everything else is ignored.

class make_facet_grid_plot(*, map_as: str, encodings: Tuple[str], supported_hue_styles: Optional[Tuple[str]] = None, register_as_kind: Union[bool, str] = True, overwrite_existing: bool = False, drop_kwargs: Tuple[str] = ('_fg', 'meta_data', 'hue_style', 'add_guide'), parse_cmap_and_norm_kwargs: bool = True, **default_kwargs)[source]#

Bases: object

This is a decorator class that transforms a plot function that works on a single axis into one that supports faceting via xarray.plot.FacetGrid.

Additionally, it allows to register the plotting function with the generic facet_grid() plot by adding the callable to _FACET_GRID_FUNCS.

MAP_FUNCS = {'dataarray': <function make_facet_grid_plot.<lambda>>, 'dataarray_line': <function make_facet_grid_plot.<lambda>>, 'dataset': <function make_facet_grid_plot.<lambda>>}#

The available mapping functions in xarray.plot.FacetGrid

DEFAULT_ENCODINGS = ('col', 'row', 'frames')#

The default encodings the facet grid supplies; these are those supported by the generic facet grid function

DEFAULT_DROP_KWARGS = ('_fg', 'meta_data', 'hue_style', 'add_guide')#

The default kwargs that are to be dropped rather than passed on to the wrapped plotting function. Can be customized via drop_kwargs argument.

__init__(*, map_as: str, encodings: Tuple[str], supported_hue_styles: Optional[Tuple[str]] = None, register_as_kind: Union[bool, str] = True, overwrite_existing: bool = False, drop_kwargs: Tuple[str] = ('_fg', 'meta_data', 'hue_style', 'add_guide'), parse_cmap_and_norm_kwargs: bool = True, **default_kwargs)[source]#

Initialize the decorator, making the decorated function capable of performing a facet grid plot.

  • map_as (str) – Which mapping to use. Available: dataset, dataarray and dataarray_line.

  • encodings (Tuple[str]) – The encodings supported by the wrapped plot function, e.g. ("x", "hue"). Note that these need to be dimensionality-reducing encodings that have a qualitatively similar effect as col & row in that they consume a data dimension. This is in contrast to plots that may represent multiple data variables, e.g. if the data comes from a xarray.Dataset; those should not be specified here.

  • supported_hue_styles (Tuple[str]) – Which hue styles are supported by the wrapped plot function. It is suggested to set this value if mapping via dataset or dataarray_line in order to disallow configurations that will not work with the wrapped plot function. If set to None, no check will be done.

  • register_as_kind (Union[bool, str], optional) – If boolean, controls whether to register the wrapped function with the generic facet grid plot, using its own name. If a string, uses that name for registration.

  • overwrite_existing (bool, optional) – Whether to overwrite an existing registration in _FACET_GRID_FUNCS. If False, an existing entry of the same register_as_kind value will lead to an error.

  • drop_kwargs (Tuple[str], optional) – Which keyword arguments to drop before invocation of the wrapped function; this can be useful to trim down the signature of the wrapped function.

  • parse_cmap_and_norm_kwargs (bool, optional) – Whether to parse colormap-related plot function arguments using the parse_cmap_and_norm_kwargs() function. Should be set to false if the decorated plot function takes care of these arguments itself.

  • **default_kwargs – Additional arguments that are passed to the single-axis plotting function. These are used both when calling it via the selected mapping function and when invoking it without a facet grid. These are recursively updated with those given upon plot function invocation.

parse_wpf_kwargs(data, **kwargs) dict[source]#

Parses the keyword arguments in preparation for invoking the wrapped plot function. This can happen both in context of a facet grid mapping and a single invocation.

__call__(plot_single_axis: Callable) Callable[source]#

Generates a standalone DAG-based plotting function that supports faceting. Additionally, integrates it as kind for the general facet grid plotting function by adding it to the global _FACET_GRID_FUNCS dictionary.

facet_grid(*, data: dict, hlpr: PlotHelper, kind: Optional[Union[dict, str]] = None, frames: Optional[str] = None, auto_encoding: Union[bool, dict] = False, suptitle_kwargs: Optional[dict] = None, squeeze: bool = True, **plot_kwargs)[source]#

A generic facet grid plot function for high dimensional data.

This function calls the data['data'].plot function if no plot kind is given, otherwise data['data'].plot.<kind>. It is designed for plotting with xarray objects, i.e. xarray.DataArray and xarray.Dataset. Specifying the kind of plot requires the data to be of one of those types and have a dimensionality that can be represented in these plots. See the correponding API documentation for more information.

In most cases, this function creates a so-called xarray.plot.FacetGrid object that automatically layouts and chooses a visual representation that fits the dimensionality of the data. To specify which data dimension should be represented in which way, it supports a declarative syntax: via the optional keyword arguments x, y, row, col, and/or hue (available options are listed in the corresponding plot function documentation), the representation of the data dimensions can be selected. This is referred to as “layout encoding”.

dantro not only wraps this interface, but adds the following functionality:

  • the frames layout encoding argument, which behaves in the same way as the other encodings, but leads to an animation being generated, thus opening up one further dimension of representation,

  • the auto_encoding feature, which allows to select layout- encodings automatically,

  • and the kind: 'auto' option, which can be used in conjunction with auto_encoding to choose the plot kind automatically as well.

  • allows col_wrap: 'auto', which selects the value such that the figure becomes more square-like (requires auto_encoding: true)

  • allows to register additional plot kind values that create plots with a custom single-axis plotting function, using the make_facet_grid_plot decorator.

For details about auto-encoding and how the plot kind is chosen, see determine_encoding() and determine_plot_kind().


When specifying frames, the animation arguments need to be specified. See here for more information on the expected animation parameters.

The value of the animation.enabled key is not relevant for this function; it will automatically enter or exit animation mode, depending on whether the frames argument is given or not. This uses the animation mode switching feature.


Internally, this function calls .squeeze on the selected data, thus being more tolerant with data that has size-1 dimension coordinates. To suppress this behaviour, set the squeeze argument accordingly.


Depending on kind and the dimensionality of the data, some plot functions might create their own figure, disregarding any previously set up figure. This includes the figure from the plot helper.

To control figure aesthetics, you can either specify matplotlib RC style parameters (via the style argument), or you can use the plot_kwargs to pass arguments to the respective plot functions. For the latter, refer to the respective documentation to find out about available arguments.

  • data (dict) – The data selected by the data transformation framework, expecting the data key.

  • hlpr (PlotHelper) – The plot helper

  • kind (str, optional) – The kind of plot to use. Options are: contourf, contour, imshow, line, pcolormesh, step, hist, scatter, errorbars and any plot kinds that were additionally registered via the make_facet_grid_plot decorator. With auto, dantro chooses an appropriate kind by itself; this setting is useful when also using the auto_encoding feature; see Automatically selecting plot kind for more information. If None is given, xarray automatically determines it using the dimensionality of the data, frequently falling back to hist for higher-dimensional data or lacking specifiers.

  • frames (str, optional) – Data dimension from which to create animation frames. If given, this results in the creation of an animation. If not given, a single plot is generated. Note that this requires animation options as part of the plot configuration.

  • auto_encoding (Union[bool, dict], optional) – Whether to choose the layout encoding options automatically. For further options, can pass a dict. See Auto-encoding of plot layout for more info.

  • suptitle_kwargs (dict, optional) – Key passed on to the PlotHelper’s set_suptitle helper function. Only used if animations are enabled. The title entry can be a format string with the following keys, which are updated for each frame of the animation: dim, value. Default: {dim:} = {value:.3g}.

  • squeeze (bool, optional) – whether to squeeze the data before plotting, such that size-1 dimensions do not take up encoding dimensions.

  • **plot_kwargs – Passed on to <data>.plot or <data>.plot.<kind> These should include the layout encoding specifiers (x, y, hue, col, and/or row).

  • AttributeError – Upon unsupported kind value

  • ValueError – Upon any upstream error in invocation of the xarray plotting capabilities. This wraps the given error message and provides additional information that helps to track down why the plotting failed.

errorbars(*, data: dict, hlpr: PlotHelper, **kwargs)[source]#
scatter3d(*, data: dict, hlpr: PlotHelper, **kwargs)[source]#

dantro.plot.funcs.graph module#

Plot functions to draw networkx.Graph objects.


Should really integrate utopya GraphPlot here!

_wiggle_pos(pos: dict, *, x: Optional[float] = None, y: Optional[float] = None, seed: Optional[int] = None) dict[source]#

Wiggles positions by absolute random amplitudes in x and y direction

  • pos (dict) – Positions dict with values being x and y positions

  • x (float, optional) – Absolute wiggle amplitude

  • y (float, optional) – Absolute wiggle amplitude

  • seed (int, optional) – Seed for the numpy.random.RandomState that is used for drawing random numbers. Set to a fixed value to always get the same positions.

_get_positions(g: Graph, *, model: Union[str, Callable], wiggle: dict = None, **kwargs) dict[source]#

Returns the positions dict for the given graph, created from a networkx layouting algorithm of a certain name or an arbitrary callable.

  • g (Graph) – The graph object for which to create the layout

  • model (Union[str, Callable]) – Name of the layouting model or the layouting function itself. If starting with graphviz_<prog>, will invoke networkx.drawing.nx_agraph.graphviz_layout() with the given value for prog. Note that these only take a single keyword argument, args. If it is a string, it’s looked up from the networkx namespace. If it is a callable, it is invoked with g as only positional argument and **kwargs as keyword arguments.

  • wiggle (dict, optional) – If given, will postprocess the positions dict by randomly wiggling x and y coordinates according to the absolute amplitudes given as values.

  • **kwargs – Passed on to the layouting algorithm.

get_positions(g: Graph, *, model: Union[str, Callable] = 'spring', model_kwargs: dict = {}, fallback: Union[str, dict] = None, silent_fallback: bool = False, **kwargs) dict[source]#

Returns the positions dict for the given graph, created from a networkx layouting algorithm of a certain name or an arbitrary callable.

This is a wrapper around _get_positions() which allows to specify a fallback layouting model to use in case the first one fails for whatever reason.

  • g (Graph) – The graph object for which to create the layout

  • model (Union[str, Callable], optional) – Name of the layouting model or the layouting function itself. If starting with graphviz_<prog>, will invoke networkx.drawing.nx_agraph.graphviz_layout() with the given value for prog. Note that these only take a single keyword argument, args. If it is a string, it’s looked up from the networkx namespace. If it is a callable, it is invoked with g as only positional argument and **kwargs as keyword arguments.

  • model_kwargs (dict, optional) – A dict where keys correspond to names of layouting models and values are parameters that are to be passed to the layouting function. This dict may contain more arguments than required, only the model key is looked up here. This can be useful for providing a wider set of defaults. These defaults are not considered when model is a callable.

  • fallback (Union[str, dict], optional) – The fallback model name (if a string) or a dict containing the key model and further kwargs.

  • silent_fallback (bool, optional) – Whether to log a visible message about the fallback or a more discrete one.

  • **kwargs – Passed on to the layouting algorithm in addition to the selected entry from model_kwargs. Keys given here update those from model_kwargs. Also, these are not passed on to the fallback invocation.

_draw_graph(g: Graph, *, ax: Axes = None, drawing: dict = {}, layout: dict = {}) list[source]#

Draws a graph using networkx.drawing.nx_pylab.draw_networkx_nodes(), networkx.drawing.nx_pylab.draw_networkx_edges(), and networkx.drawing.nx_pylab.draw_networkx_labels().


This function is not yet completed and may change anytime.

  • g (Graph) – The graph to draw

  • out_path (str) – Where to store it to

  • drawing (dict, optional) – Drawing arguments, containing the nodes, edges and labels keys. The labels key can contain the from_attr key which will read the attribute specified there and use it for the label.

  • layout (dict, optional) – Used to generate node positions via the get_positions() function.

dantro.plot.funcs.multiplot module#

Generic, DAG-based multiplot function for the PyPlotCreator and derived plot creators.

multiplot(*, hlpr: PlotHelper, to_plot: Union[List[dict], Dict[Tuple[int, int], List[dict]]], data: dict, funcs: Dict[str, Callable] = None, show_hints: bool = True, **shared_kwargs) None[source]#

Consecutively call multiple plot functions on one or multiple axes.

to_plot contains all relevant information for the functions to plot. If to_plot is list-like the plot functions are plotted on the current axes created through the hlpr. If to_plot is dict-like, the keys specify the coordinate pair selecting an ax to plot on, e.g. (0,0), while the values specify a list of plot function configurations to apply consecutively. Each list entry specifies one function plot and is parsed via the parse_function_specs() function.

The multiplot works with any plot function that either operates on the current axis and does not create a new figure or does not require an axis at all.


While most functions will automatically operate on the current axis, some function calls may require an axis object. If so, use the pass_axis_object_as argument to specify the name of the keyword argument as which the current axis is to be passed to the function call.

Look at the multiplot documentation for further information.


A simple to_plot specification for a single axis may look like this:

  - function: sns.lineplot
    data: !dag_result data
    # Note that especially seaborn plot functions require a
    # `data` input argument that can conveniently be
    # provided via the `!dag_result` YAML-tag.
    # If not provided, nothing is plotted without emitting
    # a warning.
  - function: sns.despine

A to_plot specification for a two-column subplot could look like this:

    - function: sns.lineplot
      data: !dag_result data
    - # ... more here ...
    - function: sns.scatterplot
      data: !dag_result data

If function is a string it is looked up from the following dictionary:

# Seaborn - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# https://seaborn.pydata.org/api.html

# Relational plots
"sns.scatterplot":      _sns.scatterplot,
"sns.lineplot":         _sns.lineplot,

# Distribution plots
"sns.histplot":         _sns.histplot,
"sns.kdeplot":          _sns.kdeplot,
"sns.ecdfplot":         _sns.ecdfplot,
"sns.rugplot":          _sns.rugplot,

# Categorical plots
"sns.stripplot":        _sns.stripplot,
"sns.swarmplot":        _sns.swarmplot,
"sns.boxplot":          _sns.boxplot,
"sns.violinplot":       _sns.violinplot,
"sns.boxenplot":        _sns.boxenplot,
"sns.pointplot":        _sns.pointplot,
"sns.barplot":          _sns.barplot,
"sns.countplot":        _sns.countplot,

# Regression plots
"sns.regplot":          _sns.regplot,
"sns.residplot":        _sns.residplot,

# Matrix plots
"sns.heatmap":          _sns.heatmap,

# Utility functions
"sns.despine":          _sns.despine,

# Matplotlib - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# https://matplotlib.org/tutorials/introductory/sample_plots.html

# Relational plots
"plt.fill":             _plt.fill,
"plt.scatter":          _plt.scatter,
"plt.plot":             _plt.plot,
"plt.polar":            _plt.polar,
"plt.loglog":           _plt.loglog,
"plt.semilogx":         _plt.fill,
"plt.semilogy":         _plt.semilogy,
"plt.errorbar":         _plt.errorbar,

# Distribution plots
"plt.hist":             _plt.hist,
"plt.hist2d":           _plt.hist2d,

# Categorical plots
"plt.bar":              _plt.bar,
"plt.barh":             _plt.barh,
"plt.pie":              _plt.pie,
"plt.table":            _plt.table,

# Matrix plots
"plt.imshow":           _plt.imshow,
"plt.pcolormesh":       _plt.pcolormesh,

# Vector plots
"plt.contour":          _plt.contour,
"plt.quiver":           _plt.quiver,
"plt.streamplot":       _plt.streamplot,

It is also possible to import callables on the fly. To do so, pass a 2-tuple of (module, name) to function, which will then be loaded using import_module_or_object().

  • hlpr (PlotHelper) – The PlotHelper instance for this plot, carrying the to-be-plotted-on figure object.

  • to_plot (Union[list, dict]) – The plot specifications. If list-like, assumes that there is only a single axis and applies all functions to that axis. If dict-like, expects 2-tuples for keys and selects the axis before commencing to plot. Beforehand, the figure needs to have been set up accordingly via the setup_figure helper.

  • data (dict) – Data from TransformationDAG selection. These results are ignored; data needs to be passed via the result placeholders! See above.

  • funcs (Dict[str, Callable], optional) – If given, use this dictionary to look up functions by name. If not given, will use a default dict with a set of matplotlib and seaborn functions.

  • show_hints (bool) – Whether to show hints in the case of not passing any arguments to a plot function.

  • **shared_kwargs (dict) – Shared kwargs for all plot functions. They are recursively updated, if to_plot specifies the same kwargs.


Note that especially seaborn plot functions require a data argument that needs to be passed via a !dag_result key, see Using data transformation results in the plot configuration. The multiplot function neither expects nor automatically passes a data DAG-node to the individual functions.


If a plot fails and the helper is configured to not raise on a failing invocation, the logger will inform about the error. This allows to still apply other functions on the same axis.


TypeError – On a non-list-like or non-dict-like to_plot argument.