

Welcome to dantro’s documentation!

dantro – from data and dentro (Greek for tree) – is a Python package that provides a uniform interface for hierarchically structured and semantically heterogeneous data.
It is built around three main features:

	data handling: loading heterogeneous data into a tree-like data structure, providing a uniform interface to it

	data transformation: performing arbitrary operations on the data, if necessary using lazy evaluation

	data visualization: creating a visual representation of the processed data

Together, these stages constitute a data processing pipeline:
an automated sequence of predefined, configurable operations.
Akin to a Continuous Integration pipeline, a data processing pipeline provides a uniform, consistent, and easily extensible infrastructure that contributes to more efficient and reproducible workflows.
This can be beneficial especially in a scientific context, for instance when handling data that was generated by computer simulations.

dantro is meant to be integrated into projects and be used to set up such a data processing pipeline, customized to the needs of the project.
It is designed to be easily customizable to the requirements of the project it is integrated in, even if the involved data is hierachically structured or semantically heterogeneous.
Furthermore, it allows a configuration-based specification of all operations via YAML [https://en.wikipedia.org/wiki/YAML] configuration files; the resulting pipeline can then be controlled entirely via these configuration files and without requiring code changes.

The dantro package is open source software released under the LGPLv3+ [https://www.gnu.org/licenses/lgpl-3.0.html] license.
It was developed alongside the Utopia project [https://gitlab.com/utopia-project/utopia] (a modelling framework for complex and adaptive systems), but is an independent package.

Hint

A description paper about the motivation and scope of dantro can be found in in the Journal of Open Source Software [https://doi.org/10.21105/joss.02316].

For a real-world example of how dantro is used, make sure to check out the Utopia project [https://utopia-project.org/], where the dantro-based data processing pipeline is fed with the output of complex systems models.

Note

If you find any errors in this documentation or would like to contribute to the project, we are happy about your visit to the project page [https://gitlab.com/utopia-project/dantro].

Basic Usage

This page illustrates the basic usage of dantro.

The only prerequisite for running these examples is that dantro is installed.
For installation instructions, have a look at the README.

Note

These examples do not go into depth about all dantro features but aim to give an overview.
To get a deeper look, follow the links provided on this page and in the rest of the documentation.

Specifically, these examples do not show how dantro can be specialized for your use case and integrated into your workflow.
For that, see Specializing dantro Classes and Integration Example, respectively.

Hint

The code snippets shown on this page are implemented as test cases to assert that they function as intended.
To have a look at the full source code used in the examples below, you can download the relevant file or view it online [https://gitlab.com/utopia-project/dantro/-/blob/master/tests/test_doc_examples.py].

Note that the integration into the test framework requires some additional code in those files, e.g. to generate dummy data.

	Setting up dantro

	Loading data

	Plotting

Setting up dantro

To get started with dantro, the first thing to do is specializing it for your use case.
For the purpose of this example, let’s say we are working on a project where we need to handle data stored in the HDF5 format and some YAML data.

The first step is to let the DataManager be able to load HDF5 data:

from dantro import DataManager
from dantro.data_loaders import Hdf5LoaderMixin, YamlLoaderMixin

class MyDataManager(Hdf5LoaderMixin, YamlLoaderMixin, DataManager):
 """MyDataManager is a manager that can load HDF5 and YAML files"""
 pass # Done here. Nothing else to do.

We now have the MyDataManager defined, which has all the data-loading capabilities we need.
There is no further setup necessary at this point.

To read more about specializing dantro, have a look at Specializing dantro Classes.

Loading data

Having defined a specialization of the DataManager, MyDataManager, we now want to load some data with it.
To do so, we initialize such an object, specifying the directory we want to load data from.

Initialize the manager, associating it with a directory to load data from
dm = MyDataManager(data_dir_path, name="happy_testing")

The name can (optionally) be given to distinguish this manager from others.
Because we have not loaded any data yet, the data tree should be empty.
Let’s check:

print(dm.tree)
Will print:
Tree of MyDataManager 'happy_testing', 0 members, 0 attributes

Now, let’s load some YAML data!
In the associated data directory, let’s say we have some YAML files like foobar.yml, which are some configuration files we want to have available.
To load these YAML files, we simply need to invoke the load() method and specify the yaml loader which we made available by mixing in the YamlLoaderMixin.
Also, we need to specify the name of the data entry

Load YAML data from the data directory
dm.load("my_cfg_files", # the name of this entry
 loader="yaml", # which loader to use
 glob_str="*.yml") # which files to find and load from the data_dir

Have a look at what was loaded
print(dm.tree)
Will print:
Tree of MyDataManager 'happy_testing', 1 member, 0 attributes
└─ my_cfg_files <OrderedDataGroup, 3 members, 0 attributes>
└┬ also_barbaz <MutableMappingContainer, 1 attribute>
├ barbaz <MutableMappingContainer, 1 attribute>
└ foobar <MutableMappingContainer, 1 attribute>

Note

The target path need not necessarily match the entry name, but more sophisticated ways of placing the loaded data inside the tree are also available.
See load() for more info.

With the configuration files loaded, let’s work with them.
Access within the tree can happen simply via item access.
Item access within the tree also allows specifying paths, i.e. using / to traverse hierarchical levels:

Get the loaded objects
foobar = dm["my_cfg_files"]["foobar"]
barbaz = dm["my_cfg_files/barbaz"]
... can now work with these as if they were dicts

As you see, groups within the data tree behave like dictionaries.
Accordingly, we can also iterate over them as we would with dictionaries:

for container_name, container in dm["my_cfg_files"].items():
 print("Got container:", container_name, container)
 # ... do something with the containers also_barbaz, barbaz, and foobar

Now, how about adding some numerical data to the tree, e.g. as stored in a hierarchically organized HDF5 file.
To do so, the hdf5 loader can be used:

dm.load("measurements", loader="hdf5", glob_str="measurements/day*.hdf5")

Given the large amount of data, look only at a condensed tree
print(dm.tree_condensed)
Will print something like:
Tree of MyDataManager 'happy_testing', 2 members, 0 attributes
└┬ my_cfg_files <OrderedDataGroup, 3 members, 0 attributes>
└┬ also_barbaz <MutableMappingContainer, 1 attribute>
├ barbaz <MutableMappingContainer, 1 attribute>
└ foobar <MutableMappingContainer, 1 attribute>
└ measurements <OrderedDataGroup, 42 members, 0 attributes>
└┬ day000 <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <NumpyDataContainer, int64, shape (148,), …
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 97), …
├ sensor001 <NumpyDataContainer, float64, shape (3, 92), …
├ (19 more) ...
├ sensor021 <NumpyDataContainer, float64, shape (3, 91), …
└ sensor022 <NumpyDataContainer, float64, shape (3, 97), …
└ temperatures <NumpyDataContainer, float64, shape (148,), …
├ day001 <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <NumpyDataContainer, int64, shape (169,), …
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 92), …
├ (22 more) ...
└ temperatures <NumpyDataContainer, float64, shape (169,), …
├ (40 more) ...

As can be seen in the tree, for each HDF5 file, a corresponding dantro group was created, e.g.: for measurements/day000.h5, a measurements/day000 group is available, which contains the hierarchically organized data from the HDF5 file.
For each HDF5 dataset, a corresponding NumpyDataContainer was created.

Note

The DataManager becomes especially powerful when groups and containers are specialized such that they can make use of knowledge about the structure of the data.

For example, the measurements group semantically represents a time series.
Ideally, the group it is loaded into should be able to combine the measurements for each day into a higher-dimensional object, thus making it easier to work with the data.
This is possible by specializing these groups.

To learn more about the DataManager and how data can be loaded, see The DataManager.

Plotting

Plotting is orchestrated by the PlotManager.
Let’s create one and associate it with the existing DataManager:

from dantro import PlotManager

Create a PlotManager and associate it with the existing DataManager
pm = PlotManager(dm=dm)

To plot, we invoke the plot() method:

pm.plot("my_example_lineplot",
 creator="external", module=".basic", plot_func="lineplot",
 y="measurements/day000/precipitation")

At this point, the arguments given to plot() have not been explained.
Furthermore, the example seems not particularly useful, e.g. because of the manually specified path to the data.
So… what is this about?!

The full power of the plotting framework comes to shine only when it is specialized for the data you are evaluating and integrated into your workflow.
Once that is done, it allows:

	Generically specifying plots in configuration files, without the need to touch code

	Automatically generating plots for parts of the data tree

	Using declarative data preprocessing

	Defining plotting functions that can be re-used for different kinds of data

	Consistently specifying the aesthetics of one or multiple plots

	Conveniently creating animations

	… and much more.

To learn more about the structure and the capabilities of the plotting framework, see here.

Integration Example

dantro works best if it’s tightly integrated into your project.
The aim of this guide is to give step-by-step instructions of how dantro can be used to build a data processing pipeline for your project.

Note

The examples given here focus on coveying the necessary steps for the pipeline integration, not so much on the ideal structure of the implementation.
Thus, we recommend going through this guide at least once before starting with the actual implementation of the data processing pipeline for your project. 🤓

	Overview

	Data Generation

	Storyline

	Preparations

	Generating data and storing it

	Summary

	Stage 1: Data Loading and Handling

	Defining a custom DataManager

	Initializing MyDataManager

	Loading data

	Summary

	Stage 2: Data Transformation

	Summary

	Stage 3: Visualization

	Defining a custom PlotManager

	Initializing MyPlotManager

	Creating plots

	Summary

	Closing Remarks

	Further Information

	Suggested module structure

	Example of a full pipeline

	Data generation and storage function

	Full load configuration

Overview

Let’s assume you are in the following situation:

	You are working on a project that generates some form of structured data.
The data itself can have very different properties. It …

	… may be hierarchically organized, e.g. in HDF5 files

	… may contain data of very different kinds (numerical array-like, meta-data, plain text data, configuration files…), i.e. semantically heterogeneous data

	… may contain data that requires processing before becoming meaningful

	You want to be able to work with this data in a uniform way:

	Load the generated data

	Access and explore it

	Transform it

	Visualize it

	You will be going through this process more than once, such that putting in the effort to automate the above steps will pay off.

The result of this integration guide will be a data processing pipeline: an automated set of procedures that can be carried out on the generated data in order to handle, transform, and visualize it.
These procedures will be referred to as the three stages of the processing pipeline.

Setting up a tightly integrated pipeline will require more than a few lines of code, as you will see in this guide.
However, once implemented, the pipeline will be highly flexible, such that you can quickly configure it to your needs.
Overall, we think that the up-front time investment of setting up the pipeline will be paid-off by the everyday gains of using this framework and the automizations it provides.

Hint

If you encounter any questions or issues with the integration, please raise an issue on the project page [https://gitlab.com/utopia-project/dantro].
We are happy to assist and smooth out the pipeline integration process.

Note

Some remarks regarding the code examples that follow below:

	The sequence of examples below is tested and ensured to work with the version of dantro this documentation corresponds to.

	The my_project string is used to refer to the Python project in which the processing pipeline is being defined in.

	In general, every name of the form MyFoobar denotes that you can (and should) choose your own name for these data structures or variables.

Important: For illustrational purposes, the code shown here is not modularized into different files but presented in a linear fashion.
If you are looking for a minimal pipeline implementation, you can follow this approach.
However, if you are building a processing pipeline that should be expandable and grow alongside your project, splitting these code chunks into multiple modules is highly recommended; see Suggested module structure.

While all relevant parts of the code examples are already included on this page, you can inspect the full source code used for these examples:

	Python Code: download or view online [https://gitlab.com/utopia-project/dantro/-/blob/master/tests/test_integration.py]

	YAML Configuration: download or view online [https://gitlab.com/utopia-project/dantro/-/blob/master/tests/cfg/integration.yml]

Note that these files are part of the automated tests and thus include a small number of additional definitions, e.g. to write output to a temporary directory instead of a local path.

Data Generation

For this guide, we define a simple data generator that will feed the example data processing pipeline.

This is of course only a placeholder for your already-existing project, e.g. a numerical simulation, an agent-based model, or some data collection routine.
The routine shown here is meant to illustrate which kinds of data structures can be worked with and in which manner.

Storyline

The storyline for our example data generator will be a numerical simulation.
Given a set of parameters, each simulation will create output data that includes:

	An HDF5 file with a bunch of (hierarchically nested) datasets

	A random_walk time series

	A simple agent-based model, which stores all its data to an abm group.
It will write the state of each agent as well as some macroscopic observables into that group.

	The set of parameters that were used to generate the simulation output

	The accompanying logger output as a text file

Furthermore, the simulation will make use of the paramspace package [https://pypi.org/project/paramspace/] to generate simulation data not for a single set of parameters but for a whole multi-dimensional parameter space.

Preparations

Disregarding the details of the numerical simulation for a moment, let’s look at how it will be embedded, configured, and invoked.

First, we need some basic imports and definitions.
For this example, let’s assume that you have base_out_path defined as the directory where simulation output should be stored in, and sim_cfg_path as the path to a YAML file that defines the parameters for the simulation.
(The project_cfg_path and plots_cfg_path will be used later on.)

-- Step 0: Some basic imports and definitions
import os

import paramspace as psp

import dantro as dtr
from dantro.tools import load_yml, write_yml

sim_cfg_path = "~/path/to/sim_cfg.yml" # simulation parameters
base_out_path = "~/my_output_directory" # where to store output
project_cfg_path = "~/my_project/project_cfg.yml" # project configuration
plots_cfg_path = "~/path/to/plot_cfg.yml" # plot configurations
NOTE: In practice, you might want to define these paths not in this
absolute fashion but via `pkg_resources.resource_filename` function

Now, let’s load the configuration and extract the simulation parameters.
Here, they will be a ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] object which allows to easily define a set of different parameters to sweep over.
(For the actual values of the parameter space, see below.)

-- Step 1: Load a configuration file
sim_cfg = load_yml(sim_cfg_path)

... and extract the simulation parameters (an iterable ParamSpace object)
pspace = sim_cfg["parameter_space"]
assert isinstance(pspace, psp.ParamSpace)

Also, we need to prepare some output directory path, here: sim_out_dir, where all the output for this specific simulation run should be stored.
The directory itself need not be created here.

-- Step 2: Prepare the output directory path for *this* simulation
sim_name = "my_simulation" # ... probably want a time stamp here
sim_out_dir = os.path.join(base_out_path, sim_name)

Store the parameter space there, for reproducibility
write_yml(pspace, path=os.path.join(sim_out_dir, "pspace.yml"))

Generating data and storing it

Having extracted the relevant parameters, we now iterate over the parameter space.
For each set of parameters resulting from this iteration, we create the data using those parameters and store it inside the output directory:

-- Step 3: Use the parameter space to generate and store the output data
for params, state_str in pspace.iterator(with_info="state_no_str"):
 # `params` is now a dict that contains the set of parameters for this
 # specific instantiation.
 # `state_str` is a string identifying this point of the parameter space

 # Create the path to the output directory for _this_ simulation
 this_out_dir = os.path.join(sim_out_dir, "sim_" + state_str)

 # Generate the data, using all those parameters
 print(f"Running simulation for parameters '{state_str}' … ", end="\t")
 generate_and_store_data(this_out_dir, **params)
 print("Done.")

print(f"All data generated and stored at {sim_out_dir} .")

In this example, the generate_and_store_data function takes care of all of the tasks.
In your project, this might be done in any other way.

Note

As the exact procedure of how the data is generated is not important, the corresponding source code of the above examples is omitted here.
(If you are interested, you can still find it below.)

Hint

If the above procedure is similar in your project, you may want to consider to also use the paramspace package [https://pypi.org/project/paramspace/] in your project to manage the parameters of your data generation procedure.

To handle hyper-parameters, dantro makes use of ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] objects in some other parts as well, e.g. for creating plots from simulations that were created in the above manner.
Using paramspace for the generation routine can thus simplify the automation of data loading and visualization later on.

So far, so good: We now have some simulation output that we can use to feed the data processing pipeline.

Summary

The above serves as an example of how we can:

	Use a configuration file to define the parameters for a set of simulations

	Store the simulation output in a specific output directory for each set of parameters

	Store the configuration and parameter space alongside, such that we can later reproduce the simulation if we wanted to

Of course, all this might be quite different to what is needed to generate or collect actual data in your specific scenario.
This example merely illustrates one way to generate that data, in the hope that you can adapt it to your needs.

For now, the important point is: You are writing data to some output directory and storing the metadata (the configuration) alongside.
This data will be the input to the processing pipeline.

Note

The data can be generated in any conceivable fashion;
it is not required that it is generated by a Python project.
Only the processing pipeline will be implemented as a Python project.

References

	Philosophy and Design Concepts

	Data generation and storage function

	Simulation parameters

	API reference load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml], write_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.write_yml], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]

Stage 1: Data Loading and Handling

Loading the generated data into a uniform data structure, the data tree, is the first stage of the data processing pipeline.

The loading will be carried out by a custom DataManager that we will call MyDataManager.
This specialization can be configured such that it adapts to the structure of the data that is being worked with, e.g. by using specialized container or group types for certain kinds of data.

Following dantro’s configurability philosophy, all relevant parameters for loading will be consolidated into a configuration file.

Defining a custom DataManager

To specialize the DataManager for the pipeline, we can simply derive from it:

-- Step 4: Define a custom DataManager
import dantro.data_loaders
import dantro.groups

class MyDataManager(dtr.data_loaders.AllAvailableLoadersMixin,
 dtr.DataManager):
 """MyDataManager can load HDF5, YAML, Text, Pickle, ..."""
 # Register known group types
 _DATA_GROUP_CLASSES = dict(ParamSpaceGroup=dtr.groups.ParamSpaceGroup,
 TimeSeriesGroup=dtr.groups.TimeSeriesGroup)

 # Specify a content mapping for loading HDF5 data
 _HDF5_GROUP_MAP = dict(time_series=dtr.groups.TimeSeriesGroup)

In this case, MyDataManager has all available loaders available.
If desired, the available loaders can be controlled in a more granular fashion, see Specializing the DataManager.

Furthermore, it was supplied with information about available group types.
We will use those below to build the initial tree structure.

The _HDF5_GROUP_MAP class variable is an example of a customization of one of the loaders.
In this case, the given mapping is used by the Hdf5LoaderMixin to load appropriately labelled HDF5 groups not as the default dantro group type, but as the specified type, which can be a specialized version.

Initializing MyDataManager

To instantiate MyDataManager, we read the corresponding configuration entry from the project configuration and pass those parameters to it:

-- Step 5: Load the project configuration
project_cfg = load_yml(project_cfg_path)

... and extract the initialization parameters for MyDataManager
dm_cfg = project_cfg["data_manager"]

-- Step 6: Set up the DataManager & associate it with the data directory.
dm = MyDataManager(sim_out_dir, name=sim_name, **dm_cfg)

The data tree is still empty (except for the `simulations` group).
Let's check:
print(dm.tree)
Will print:
Tree of MyDataManager 'my_simulation', 1 member, 0 attributes
└─ simulations <ParamSpaceGroup, 0 members, 0 attributes>

As initialization parameters, we pass the following arguments:

data_manager:
 # Where to store output that is associated with the data from this directory
 out_dir: "eval/{timestamp:}" # can be a format string

 # Define the structure of the data tree beforehand; this allows to specify
 # the types of groups before content is loaded into them.
 create_groups:
 - path: simulations
 Cls: ParamSpaceGroup

 # The load configuration: specifies which files to load how and from where
 load_cfg:
 # ... load configuration goes here; omitted for brevity

These already include the so-called load_cfg, i.e. a set of parameters that specifies which data should be loaded from where and how it should be stored in the data tree.

Furthermore, these parameters can be used to already generate a part of the data tree; this can make loading data easier in some scenarios.
Here, the create_groups argument creates the simulations group, a ParamSpaceGroup, where each member is assumed to be the output of a single simulation.
(See here for more information.)

The out_dir of the DataManager is a directory that is used to store output that is associated with the to-be-loaded data.
For example, the visualization output will end up in that directory.

Loading data

Let’s recap which data was written during data generation:

	pspace.yml stored the simulation parameters of all simulations.

	For each simulation, the following files were created:

	data.h5 is an HDF5 file with hierarchically structured numerical data

	params.yml is the set of parameters for this particular simulation

	sim.log is the plain text simulation log output

Basically, we want to represent the same structure in the data tree.
Thus, loading should carry out the following operations:

	Load the global pspace.yml and associate it with the already existing simulations group, such that it is aware of the parameter space.

	For each simulation output directory:

	Load data.h5 into a new group inside the simulations group.

	Load simulation metadata (sim.log and params.yml) and store them alongside.

As mentioned above, all these load operations can be specified in the load_cfg.
For the data.h5 files, an entry of the load_cfg would look something like this:

sim_data:
 loader: hdf5
 glob_str: sim_*/data.h5
 required: true
 path_regex: sim_(\d+)/data.h5
 target_path: simulations/{match:}/data

This selects the relevant data.h5 files inside the output directory using the glob_str argument and then uses path_regex to determine the target_path inside the simulations group.
The full load configuration is omitted here (you can inspect it below).
For general information on the load configuration, see here.

With the load configuration already specified during initialization, loading the data into the data tree is a simple matter of invoking the load_from_cfg() method:

-- Step 7: Load data using the load configuration given at initialisation
dm.load_from_cfg(print_tree="condensed")
Will load the data and then print a condensed tree overview:
Tree of MyDataManager 'my_simulation', 1 member, 0 attributes
└─ simulations <ParamSpaceGroup, 30 members, 1 attribute>
└┬ 12 <ParamSpaceStateGroup, 3 members, 0 attributes>
└┬ params <MutableMappingContainer, 1 attribute>
├ data <OrderedDataGroup, 2 members, 0 attributes>
└┬ abm <OrderedDataGroup, 2 members, 0 attributes>
└┬ energy <TimeSeriesGroup, 31 members, 1 attribute>
└┬ 0 <XrDataContainer, float64, (dim_0: 42), 0 attributes>
├ 1 <XrDataContainer, float64, (dim_0: 42), 0 attributes>
├ (27 more) ...
├ 29 <XrDataContainer, float64, (dim_0: 4), 0 attributes>
└ 30 <XrDataContainer, float64, (dim_0: 0), 0 attributes>
├ mean_energy <NumpyDataContainer, float64, shape (101,), 0 attributes>
└ num_agents <NumpyDataContainer, uint32, shape (101,), 0 attributes>
└ random_walk <NumpyDataContainer, float64, shape (1024,), 0 attributes>
└ log <StringContainer, str stored, 1 attribute>
├ 13 <ParamSpaceStateGroup, 3 members, 0 attributes>
└┬ params <MutableMappingContainer, 1 attribute>
├ data <OrderedDataGroup, 2 members, 0 attributes>
└┬ abm <OrderedDataGroup, 2 members, 0 attributes>
└┬ energy <TimeSeriesGroup, 35 members, 1 attribute>
└┬ 0 <XrDataContainer, float64, (dim_0: 42), 0 attributes>
├ (33 more) ...
└ 34 <XrDataContainer, float64, (dim_0: 0), 0 attributes>
├ mean_energy <NumpyDataContainer, float64, shape (101,), 0 attributes>
└ num_agents <NumpyDataContainer, uint32, shape (101,), 0 attributes>
└ random_walk <NumpyDataContainer, float64, shape (1024,), 0 attributes>
└ log <StringContainer, str stored, 1 attribute>
├ 14 <ParamSpaceStateGroup, 3 members, 0 attributes>
...

The (condensed) tree view shows which data was loaded into which part of the tree and provides some further information on the structure of the data.
As you see, the initial simulations group was populated with the output from the individual simulations, the HDF5 tree was unpacked, and the parameter and log output was stored alongside.
So: We preserved the hierarchical representation of the data, both from within the HDF5 file and from the directory structure.

Furthermore, the loader already applied a type mapping during loading: the data/abm/energy group is a TimeSeriesGroup, which assumes that the underlying datasets represent a time series.

Hint

load_from_cfg() also allows supplying new parameters or updating those given at initialization.

Once loaded, the tree can be navigated in a dict-like fashion:

To access data, can use the dict interface and paths
for sim in dm["simulations"].values():
 num_steps = sim["params"]["abm"]["num_steps"]
 extinct_after = np.argmin(sim["data/abm/num_agents"])

 print(f"In simulation '{sim.name}', agents got extinct after "
 f"{extinct_after} / {num_steps} iterations.")

Summary

To recap, the following steps were carried out:

	We specialized a DataManager

	We then initialized it with arguments from the project_cfg

	We loaded data as it was specified in a load configuration (also defined in project_cfg)

With this, the first stage of the data processing pipeline is set up: We have automated the loading of data into the data tree.
If further data needs to be loaded or the shape of the data tree needs to be adjusted, the load_cfg can be changed accordingly.

References

	The DataManager

	Specializing the DataManager

	Usage examples

	API reference: DataManager and methods __init__(), load_from_cfg(), and load()

Stage 2: Data Transformation

To couple to the data transformation framework, the second stage of the processing pipeline, no special steps need to be taken.
As part of the data visualization stage, the plot creators take care of setting up everything and passing the relevant configuration options directly to the data transformation framework.

However, to be able to conveniently register additional data operations, we suggest to add a dedicated module (e.g. data_ops.py) to your project in which data operations can be defined and registered using the register_operation() function.
It can look as simple as the following:

-- Step 8: Add a module where additional data operations can be defined
"""This module can be used to register project-specific data operations"""
from dantro.data_ops import register_operation

def do_something(data):
 """Given some data, does something."""
 # ... do something here ...
 return data

register_operation(name="do_something", func=do_something)

Even if you do not have the need for custom operations at the point of building the integration, it is useful to already set up this module, such that it is easy to add further operations once you need them.

Note

Make sure that this additional module is loaded when the rest of your project is loaded.
If the register_operation() calls are not interpreted, the operations will not be available.

Summary

	No additional steps required

	For having a place to define and register further data operations, adding a custom module is useful

References

	Data Processing and Registering operations

	Data Transformation Framework

Stage 3: Visualization

With the data tree loaded and the transformation framework ready, we merely need to set up the plotting framework, which is orchestrated by the PlotManager.

The process is similar to that with the DataManager:
We will create a specialized version of it, instantiate it, and provide a configuration that defines some common parameters.

Defining a custom PlotManager

Akin to the customization achieved via MyDataManager, we will define MyPlotManager as a customization of PlotManager.
The customizations done there pertain mostly to registering further plot creators.

In this example, we will use dantro’s existing plot creators.
Subsequently, MyPlotManager is simply a child of PlotManager and does not require any further changes:

-- Step 9: Specialize a PlotManager
class MyPlotManager(dtr.PlotManager):
 """My custom PlotManager"""
 pass

 # If plot creators are customized, specify them here
 # CREATORS = dict(custom=MyCustomPlotCreator)

Initializing MyPlotManager

In order to have access to the data tree, MyPlotManager is associated with access to the MyDataManager instance from above.
Furthermore, we will use the configuration specified in the project_cfg during initialization, such that we can adjust MyPlotManager behaviour directly from the project configuration file:

-- Step 10: Initialize MyPlotManager from the project configuration
pm_cfg = project_cfg["plot_manager"]

pm = MyPlotManager(dm=dm, **pm_cfg)

The pm_cfg is used to specify some default behaviour of the manager, e.g. that it should raise exceptions instead of merely logging them:

plot_manager:
 # Set the default creator type
 default_creator: pyplot

 # Raise exceptions when a plot fails
 raise_exc: true

 # Specify some default kwargs for the creators
 creator_init_kwargs:
 external:
 default_ext: pdf # plots should by default be saved as PDFs

 universe:
 default_ext: pdf
 psgrp_path: simulations

 multiverse:
 default_ext: pdf
 psgrp_path: simulations

As part of this initialization process, default arguments for the plot creators are also supplied via creator_init_kwargs.
In this case, we configure these creators to use pdf as the default file extension.
For the ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]-supporting plot creators (see Plots from Multidimensional Data), we specify the path to the ParamSpaceGroup inside the data tree.

Creating plots

Creating plots is now as easy as invoking plot_from_cfg() with a path to a configuration file (or with a dict containing the corresponding configuration).

Let’s have a look at an example plot configuration and how it is invoked:

For each simulation, called "universe" here, plot the random walk
random_walk:
 # Choose a creator
 # Here: the UniversePlotCreator, a specialization of the PyPlotCreator
 creator: universe
 universes: all

 # Use dantro's generic facet grid function, useful for representing
 # high-dimensional data
 module: .generic
 plot_func: facet_grid

 # Select the data to plot
 select:
 data:
 # Access the data/random_walk container for each simulation ...
 path: data/random_walk
 # ... and transform it into an xr.DataArray
 transform:
 - xr.DataArray: !dag_prev
 kwargs:
 dims: [iteration]

-- Step 11: Invoke the plots specified in a configuration file
pm.plot_from_cfg(plots_cfg=plots_cfg_path)

Once invoked, the logger output will show the progress of the plotting procedure.
It will show that a plot named random_walk is created for each of the simulations, as specified in the plot configuration.
This is using the UniversePlotCreator, which is capable of detecting the parameter space and which uses the capabilities of the PlotManager to generate multiple plots.

Hint

To plot only a subset of the plots configured in plots_cfg, use the plot_only argument of plot_from_cfg().
This is a useful parameter to make available via a CLI.

The plotting output will be saved to the output directory, which is the eval/{timestamp:} directory that MyDataManager created inside the data directory exactly for this purpose.

Extended example

Let’s look at a more involved example that plots mean random walk data from the parameter sweep (mean_random_walk) and the ABM’s mean energy time series (abm_mean_energy):

--- Define so-called "multiverse" plots, using data from all simulations

Using data from all simulations, compute the mean over the seed dimension and
then show different lines for different step sizes
mean_random_walk:
 creator: multiverse
 module: .generic
 plot_func: facet_grid

 # Select the data from the individual simulations and combine them into a
 # higher-dimensional xarray.DataArray
 select_and_combine:
 fields:
 random_walk: data/random_walk

 transform:
 # Perform the mean operation over the seed dimension
 - .mean: [!dag_tag random_walk, seed]
 # Rename the dim_0 dimension
 - .rename: !dag_prev
 kwargs:
 dim_0: iterations
 tag: data

 # Configure the facet grid to show max_step_size as line hues
 kind: line
 x: iterations
 hue: max_step_size

 # And make the plot prettier using the PlotHelper
 helpers:
 set_title:
 title: Averaged Random Walk Trajectories
 set_labels:
 y: Value

Using data of the sweep over the `seed` dimension, plot individual time
series of the mean agent energy
abm_mean_energy:
 creator: multiverse

 module: .generic
 plot_func: facet_grid

 select_and_combine:
 fields:
 mean_energy:
 path: data/abm/mean_energy
 # Transform it into a DataArray and rename dimensions accordingly
 transform:
 - xr.DataArray
 - .rename: !dag_prev
 kwargs:
 dim_0: iterations

 # Only use a single max_step_size, because ABM results are unaffected
 subspace:
 max_step_size: [1.]

 transform:
 - .squeeze: !dag_tag mean_energy
 kwargs:
 drop: true
 - print: !dag_prev
 tag: data

 # Configure the facet grid to show different seeds as line hue
 kind: line
 x: iterations
 hue: seed

 # Finally, invoke some helpers
 helpers:
 set_title:
 title: Mean Agent Energy for Different Simulations
 set_limits:
 x: [0, ~]
 y: [0, ~]

These plot configurations already do much more and are meant to illustrate the capabilities of the plotting framework.
Without going into detail, let’s highlight some of the operations specified above:

	With the MultiversePlotCreator, data from several simulations can be combined into a higher-dimensional array.

	The select_and_combine key controls which data to select from each simulation and how it should be combined into the higher-dimensional object.

	The transform key is used to control the Data Transformation Framework, e.g. to calculate the mean over some dimension of the data or label the dimensions accordingly.

	The facet_grid plot is a very versatile plotting function for high-dimensional data, which is why it is used here. See here for more information.

	With the plot helpers, the aesthetics of the plot can be changed, e.g. to set limits or labels right from the plot configuration.

The above example gives a glimpse of the possibilities of the plotting framework.
All of these features are already available as part of dantro.

Importantly, though, the plotting framework becomes much more capable once you specialize it to your needs.
For example, with the PyPlotCreator and its built-in access to the Data Transformation Framework, you can easily define further plotting functions that form a bridge between selected and transformed data and its visualization.

Hint

To re-use plot configurations, there is the Plot Configuration Inheritance feature, which makes plot specifications much more modular and concise.
It allows to outsource common parts of the plot configurations into a so-called “base configuration”, and compose these back together using the based_on argument.

This feature requires to specify a set of “base plot configurations”, e.g. as defined in a base_plots_cfg.yml file.
The path to this file or the content of it needs to be communicated to the PlotManager at some point, e.g. via its __init__() call.

Summary

To couple the data loading and transformation stages to the plotting framework, the following steps were necessary:

	Specialize a PlotManager

	Instantiate it using arguments from a configuration file

	Configure plots in a configuration file

	Tell the MyPlotManager instance to generate plots from that configuration

With this, the data processing pipeline is complete: it automates the loading of data, its processing, and its visualization. 🎉🎉

Note

Before repeating these steps for your project, make sure to study the Suggested module structure section below.

References

	The PlotManager

	Plot Creators

	Specializing BasePlotCreator

	Plot Data Selection

	Plotting FAQs

Closing Remarks

Of course, integration doesn’t end here.
While this guide describes how the basic infrastructure of the pipeline can be implemented, you have many more possibilities to specialize the pipeline to your project’s needs.

We hope that this guide helps in integrating dantro into your project!

Note

If you encounter any difficulties with this process, have a question or suggestion, or need support of any other kind, feel free to open an issue [https://gitlab.com/utopia-project/dantro/issues] on the project page.
We are looking forward to your feedback!

Further Information

Suggested module structure

In the linearly presented code examples above, no particular module structure is apparent.
For the Python project your project’s processing pipeline will be implemented in, we suggest the following structure:

├ run_my_pipeline.py # performs pipeline invocation
└ my_project/ # contains the pipeline definition
 ├ __init__.py
 ├ data_io.py # defines MyDataManager and custom containers
 ├ data_ops.py # defines custom data operations
 ├ ...
 ├ pipeline_cfg.yml # stores default pipeline configuration
 ├ base_plots_cfg.yml # defines base plot configurations
 ├ ...
 ├ plot_funcs.py # defines functions for PyPlotCreator
 └ plotting.py # defines MyPlotManager

Here, run_my_pipeline.py is a script that determines which configuration files should be used and passed to MyDataManager and MyPlotManager.
It can, for example, use the argparse module [https://docs.python.org/3/library/argparse.html] to provide a command line interface where the data directory and the configuration file paths can be specified.

What goes where?

So… which code examples from above should be implemented in which module?

	Class definitions and specializations should all go into the modules inside my_project

	Variable definitions (e.g. via CLI), instantiations of managers, and method calls should go into run_my_pipeline.py (for good measure: inside an if __name__ == "__main__" block)

	… the only exception being calls to register_operation(), which should be made in the data_ops module directly

Regarding configuration files, we suggest the following:

	Put the pipeline default values into pipeline_cfg.yml and use the entries from there to set up MyDataManager and MyPlotManager, similar as the project_cfg.yml the example.

	Any updates to those defaults can then be done at runtime, e.g. via run_my_pipeline.py

	Plot configurations of plots you frequently use should go into base_plots_cfg.yml

Adapting to a growing project

Your project will certainly grow over time.
The above structure allows that your pipeline implementation grows alongside.
You can dynamically extend the above structure with submodules to allow a more granular module structure:

├ run_my_pipeline.py
└ my_project/
 ├ data_io/
 ├ __init__.py
 ├ some_custom_container.py
 ├ some_custom_group.py
 ├ ...
 └ some_custom_proxy.py
 ├ data_ops/
 ├ __init__.py
 ├ operations.py
 └ ...
 ├ plotting/
 ├ plot_funcs/
 ├ __init__.py
 ├ generic.py
 ├ ...
 └ multi_dim.py
 ├ __init__.py
 ├ some_plot_creator.py
 ├ ...
 └ some_custom_proxy.py
 ├ __init__.py
 ├ data_io.py
 ├ data_ops.py
 ├ ...
 ├ pipeline_cfg.yml
 ├ base_plots_cfg.yml
 ├ ...
 ├ plot_funcs.py
 └ plotting.py

Hint

By adding additional imports from the new submodules to the top-level modules, you can avoid breaking imports.

Remarks

	For robustly determining configuration file paths from within the python package, use pkg_resources.resource_filename (see their docs [https://setuptools.readthedocs.io/en/latest/pkg_resources.html])

	The dantro manager structures usually allow to pass strings instead of nested dicts for defining configurations, e.g. the plots_cfg.
Such a string is interpreted as a path to a YAML configuration file.
This can alleviate loading the YAML files in the outer scope, e.g. the run_my_pipeline.py.

	We are considering [https://gitlab.com/utopia-project/dantro/-/issues/163] to add a CLI interface directly to dantro to alleviate the need to define a run_my_pipeline.py file manually.

Example of a full pipeline

For an example of a fully integrated data processing pipeline that makes use of most dantro features, have a look at the Utopia project [https://gitlab.com/utopia-project/utopia/blob/master/python/utopya/utopya].
The specializations described above are implemented in the datacontainer, datagroup, plotting and datamngr modules shown above.
User-defined plotting functions for the customized plot creators can be found in a separate plotting module [https://gitlab.com/utopia-project/utopia/-/tree/master/python/model_plots].

Data generation and storage function

The following example shows the data generation routine, consisting of a random walk and a (naive) implementation of a simple agent-based model (ABM).

import os
from functools import reduce

import h5py as h5
import numpy as np

from dantro.tools import write_yml

class Agent:
 """A simple agent class, emulating an ABM"""
 def __init__(self, *, energy: float):
 """Sets up an agent with some initial energy value"""
 self.energy = energy

 def iterate(self, *, p_death: float, p_eat: float,
 dE_eat: float, dE_live: float) -> "Agent":
 """Iterates the agent state: deduces life costs, evaluates probability
 of eating and random death.

 Note that negative energy will lead to the agent not being regarded
 as alive any longer.
 """
 self.energy += dE_live

 if np.random.random() < p_eat:
 self.energy += dE_eat

 if p_death > 0. and np.random.random() < p_death:
 self.energy = 0
 return self

 def is_alive(self) -> bool:
 """Whether the agent is still alive, i.e. has positive energy"""
 return self.energy > 0.

def generate_and_store_data(out_dir: str, *, seed: int, **params) -> dict:
 """Generate the simulation data using the given parameters and store the
 results in a file inside ``out_dir``.

 .. note::

 In practice, this will be your own data-generating module or project.
 This example function aims to show different aspects of what's possible
 to do with dantro.

 Args:
 out_dir (str): Path to the directory to store data files in
 **params: The data generation parameters
 """
 def perform_random_walk(*, num_steps: int, initial_state: float,
 max_step_size: float) -> np.ndarray:
 """Performs a 1D random walk, returns an array of size (num_steps+1)"""
 rand_nums = np.random.uniform(-max_step_size, max_step_size,
 size=(num_steps + 1,))
 rand_nums[0] = initial_state
 return np.cumsum(rand_nums)

 def iterate_abm(agents, **iter_kwargs) -> list:
 """Iterates the ABM and returns an updated list of agents"""
 agents = [a.iterate(**iter_kwargs) for a in agents]
 return [a for a in agents if a.is_alive()]

 def write_agent_data(agents, *, step: int, base_group: h5.Group,
 mean_energy: h5.Dataset, num_agents: h5.Dataset):
 """Stores agent data in the given base group"""
 energy = [a.energy for a in agents]
 base_group.create_dataset(f"energy/{step}", data=energy)

 mean_energy[step] = np.mean(energy if energy else [np.nan])
 num_agents[step] = len(agents)

 # Label the group accordingly
 base_group["energy"].attrs["content"] = "time_series"

 # -- Preparations
 # Emulate a logger for this example. In a real example, this would be a
 # proper logger, configured to write directly to a file ...
 log = []

 # Set up output directory
 log.append(f"Creating output directory {out_dir} ...")
 os.makedirs(out_dir, exist_ok=True)

 # Seed the RNG
 log.append(f"Setting PRNG seed to {seed} ...")
 np.random.seed(seed)

 # Set up HDF5 file to write most of the output to
 log.append("Opening HDF5 output file ...")
 f = h5.File(os.path.join(out_dir, "data.h5"), mode='w')

 # -- Generate data and store it into the HDF5 file
 log.append("Generating and storing data now ...")

 f.create_dataset("random_walk",
 data=perform_random_walk(**params["random_walk"]))
 log.append("Stored random walk data.")

 log.append("Setting up simple ABM ...")
 num_steps = params["abm"]["num_steps"]
 num_agents = params["abm"]["num_agents"]

 g = f.create_group("abm")
 mean_energy_ds = g.create_dataset("mean_energy", shape=(num_steps+1,),
 dtype='float64', fillvalue=np.nan)
 num_agents_ds = g.create_dataset("num_agents", shape=(num_steps+1,),
 dtype='uint32', fillvalue=0)

 agents = [Agent(**params["abm"]["init"]) for _ in range(num_agents)]
 write_agent_data(agents, step=0, base_group=g,
 mean_energy=mean_energy_ds, num_agents=num_agents_ds)

 for i in range(num_steps):
 agents = iterate_abm(agents, **params["abm"]["iterate"])
 write_agent_data(agents, step=i+1, base_group=g,
 mean_energy=mean_energy_ds, num_agents=num_agents_ds)
 if not agents:
 break

 # -- Finish up data writing
 # The hierarchically structured data
 log.append("Closing HDF5 file ...")
 f.close()

 # The parameters as a YAML file
 log.append("Storing simulation parameters ...")
 write_yml(dict(seed=seed, **params),
 path=os.path.join(out_dir, "params.yml"))

 # Lastly, the log output as a text file
 log.append("Storing log output ... good bye!")
 with open(os.path.join(out_dir, "sim.log"), 'w') as f:
 f.write("\n".join(log))
 f.write("\n")

Simulation parameters

The corresponding simulation parameters are the following, which actually represent a two-dimensional parameter space (along dimensions seed of the internal random number generator, and max_step_size of the random walk).

A parameter space of simulation parameters
parameter_space: !pspace
 # The PRNG seed, here: a sweep variable
 seed: !pdim
 default: 42
 range: [10] # sweeps over values 0, 1, 2, ..., 9

 # The random walk parameters
 random_walk:
 initial_state: 0.
 num_steps: 1023
 max_step_size: !pdim
 default: 1.
 values: [0.1, 0.3, 1.0]

 abm:
 num_steps: 100
 num_agents: 42
 init:
 energy: 1.
 iterate:
 dE_live: -.05
 dE_eat: +.1
 p_death: .01
 p_eat: .1

Full load configuration

The following is the load_cfg used in the initialization of MyDataManager:

Load the parameter space object into the ParamSpaceGroup attributes
pspace:
 loader: yaml_to_object # ... to load it as an ObjectContainer
 glob_str: pspace.yml
 required: true
 load_as_attr: true
 unpack_data: true # ... and store as ParamSpace obj.
 target_path: simulations

Load the configuration files that are generated for _each_ simulation
sim_params:
 loader: yaml
 glob_str: sim_*/params.yml
 required: true
 path_regex: sim_(\d+)/params.yml
 target_path: simulations/{match:}/params

Load the binary output data from each simulation.
sim_data:
 loader: hdf5
 glob_str: sim_*/data.h5
 required: true
 path_regex: sim_(\d+)/data.h5
 target_path: simulations/{match:}/data
 enable_mapping: true
 map_from_attr: content # which attribute to use for key of type mapping
 # See MyDataManager for the available key -> type mappings

Load the logging output for each simulation
sim_log:
 loader: text
 glob_str: sim_*/sim.log
 required: false
 path_regex: sim_(\d+)/sim.log
 target_path: simulations/{match:}/log

Specializing dantro Classes

This page shows a few examples of how to specialize dantro classes to your liking.
This step is an important aspect of adapting dantro to work with the data structures that you are frequently using, which is beneficial for good integration into your workflow.

Note

The code snippets shown on this page are implemented as test cases to assert that they function as intended.
To have a look at the full source code used in the examples below, you can download the relevant file or view it online [https://gitlab.com/utopia-project/dantro/-/blob/master/tests/test_doc_examples.py].

Note that the integration into the test framework requires some additional code in those files, e.g. to generate dummy data.

	Specializing a data container

	Using a specialized data container

	Configuring mixins

	Specializing the DataManager

	Adding data loaders

	Specializing the PlotManager

	Specializing BasePlotCreator

Specializing a data container

As an example, let’s look at the implementation of the MutableSequenceContainer, a container that is meant to store mutable sequences:

Import the python abstract base class we want to adhere to
from collections.abc import MutableSequence

Import base container class and the mixins we would like to use
from dantro.base import BaseDataContainer
from dantro.mixins import CheckDataMixin, CollectionMixin, ItemAccessMixin

class MutableSequenceContainer(CheckDataMixin,
 ItemAccessMixin,
 CollectionMixin,
 BaseDataContainer,
 MutableSequence):
 """The MutableSequenceContainer stores sequence-like mutable data"""

The steps to arrive at this point are as follows:

The collections.abc python module is also used by python to specify the interfaces for python-internal classes.
In the documentation it says [https://docs.python.org/3/library/collections.abc.html] that the MutableSequence inherits from Sequence and has the following abstract methods: __getitem__, __setitem__, __delitem__, __len__, and insert.

As we want the resulting container to adhere to this interface, we set MutableSequence as the first class to inherit from.
The BaseDataContainer is what makes this object a dantro data container.
It implements some of the required methods to concur with the MutableSequence interface but leaves others abstract.

Now, we need to supply implementations of these abstract methods.
That is the job of the following two (reading from right to left) mixin classes.
In this case, the Sequence interface has to be fulfilled.
As a Sequence is nothing more than a Collection with item access, we can fulfill this by inheriting from the CollectionMixin and the ItemAccessMixin.

The CheckDataMixin is an example of how functionality can be added to the container while still adhering to the interface.
This mixin checks the provided data before storing it and allows specifying whether unexpected data should lead to warnings or exceptions; for an example, see below

Some methods will remain abstract, in this case: insert.
These need to be manually defined; the MutableSequenceContainer‘s insert() method does exactly that, thus becoming a fully non-abstract class:

def insert(self, idx: int, val) -> None:
 """Insert an item at a given position.

 Args:
 idx (int): The index before which to insert
 val: The value to insert
 """
 self.data.insert(idx, val)

Using a specialized data container

Once defined, instantiation of a custom container works the same way as for other data containers:

dc = MutableSequenceContainer(name="my_mutable_sequence",
 data=[4, 8, 16])

Insert values
dc.insert(0, 2)
dc.insert(0, 1)

Item access and collection interface
assert 16 in dc
assert 32 not in dc
assert dc[0] == 1

for num in dc:
 print(num, end=", ")
prints: 1, 2, 4, 8, 16,

Configuring mixins

Many mixins allow some form of configuration.
This typically happens via class variables.

Let’s define a new container that strictly requires its stored data to be a list, i.e. an often-used mutable sequence type.
We can use the already-included CheckDataMixin such that it checks a type.
To do so, we set the DATA_EXPECTED_TYPES to only allow list and we set DATA_UNEXPECTED_ACTION to raise an exception if this is not the case.

class StrictlyListContainer(MutableSequenceContainer):
 """A MutableSequenceContainer that allows only a list as data"""
 DATA_EXPECTED_TYPES = (list,) # as tuple or None (allow all)
 DATA_UNEXPECTED_ACTION = 'raise' # can be: raise, warn, ignore

This will work
some_list = StrictlyListContainer(name="some_list", data=["foo", "bar"])

The following will fail
with pytest.raises(TypeError):
 StrictlyListContainer(name="some_tuple", data=("foo", "bar"))

with pytest.raises(TypeError):
 StrictlyListContainer(name="some_tuple", data="just some string")

Other mixins provide other class variables for specializing behavior.
Consult the documentation or the source code to find out which ones.

Note

The class variables typically define the default behavior for a certain specialized type.
However, depending on the mixin, its behavior might also depend on runtime information, e.g. specified in __init__.

Warning

We advise against overwriting class variables during the lifetime of an object.

Specializing the DataManager

This works in essentially the same way: A DataManager is specialized by adding data_loaders mixin classes.

import dantro
from dantro.data_loaders import PickleLoaderMixin, YamlLoaderMixin

class MyDataManager(PickleLoaderMixin,
 YamlLoaderMixin,
 dantro.DataManager):
 """A DataManager specialization that can load pickle and yaml data"""

That’s all.

For more information, see The DataManager.

Hint

It’s not strictly required to define a new DataManager class to use loader mixins:
The DataManager is aware of all registered data loaders and can access them via the DATA_LOADERS registry.

However, if you plan on extending it, it may be the more convenient approach to define this custom class and include mixins.

Note

When using specialized container classes such a custom DataManager is also the place to configure data loaders to use those classes.
For example, when using the Hdf5LoaderMixin, the _HDF5-prefixed class variables can be set to use the specialized container classes rather than the defaults.

Note

For an integration example, you can have a look at the data manager used in utopya [https://gitlab.com/utopia-project/utopya/-/blob/main/utopya/eval/datamanager.py].

Adding data loaders

Adding a custom data loader is simple.
As an example, let’s look at how a data loader mixin for plain text files (TextLoaderMixin) is implemented in dantro:

"""Defines a loader mixin to load plain text files"""

from ..containers import StringContainer
from ._registry import add_loader

class TextLoaderMixin:
 """A mixin for :py:class:`~dantro.data_mngr.DataManager` that supports
 loading of plain text files."""

 @add_loader(TargetCls=StringContainer, register_aliases=["text"])
 def _load_plain_text(
 filepath: str, *, TargetCls: type, **load_kwargs
) -> StringContainer:
 """Loads the content of a plain text file into a
 :py:class:`~dantro.containers.general.StringContainer`.

 Args:
 filepath (str): Where the plain text file is located
 TargetCls (type): The class constructor
 **load_kwargs: Passed on to :py:func:`open`

 Returns:
 StringContainer: The reconstructed StringContainer
 """
 with open(filepath, **load_kwargs) as f:
 data = f.read()

 return TargetCls(data=data, attrs=dict(filepath=filepath))

So basically:

	Import the add_loader decorator from dantro.data_loaders

	Define your mixin class

	Add a method named _load_<name> and decorate it with @add_loader(TargetCls=SomeClass).

Note

Here, you have to decide for a target type for the return value of the loader.
This can be any dantro container or group type, see dantro.containers or dantro.groups.

If there is no suitable container type, you can either specialize one yourself.
Alternatively, the PassthroughContainer always works.

	Fill in the method’s body to implement the loading of your data.

	Initialize and return the TargetCls object, passing the loaded data to it.

Specializing the PlotManager

The plot manager can be specialized to support further functionality simply by overloading methods that may or may not invoke the parent methods.
However, given the complexity of the plot manager, there is no guide on how to do this exactly: It depends a lot on what you want to achieve.

In a simple situation, a specialized PlotManager may simply overwrite some default values via the class variables.
This could, for instance, be the plot function resolver, which defaults to PlotFuncResolver:

import dantro

class MyPlotFuncResolver(dantro.plot.utils.PlotFuncResolver):
 """A custom plot function resolver class"""

 BASE_PKG = "my_custom_package.plot_functions"
 """For relative module imports, regard this as the base package.
 A plot configuration ``module`` argument starting with a ``.`` is
 looked up in that module.

 Note that this needs to be an importable module.
 """

class MyPyPlotManager(dantro.PlotManager):
 """My custom plot manager"""

 PLOT_FUNC_RESOLVER = MyPlotFuncResolver
 """Use a custom plot function resolver"""

Note

For an operational example in a more complex framework setting, see the specialization used in the utopya project [https://gitlab.com/utopia-project/utopya/-/blob/main/utopya/eval/plotmanager.py].
There, the PlotManager is extended such that a number of custom module paths are made available for import.

Specializing BasePlotCreator

As described in Plot Creators, dantro already supplies a range of plot creators.
Furthermore, dantro provides the BasePlotCreator, which provides an interface and a lot of the commonly used functionality.

Specialization thus can be of two kinds:

	Using an existing plot creator and configuring it to your needs.

	Implementing a whole new plot creator, e.g. because you desire to use a different plotting backend.

In general, we recommend to refer to the implementation of existing dantro.plot.creators as examples for how this can be achieved.
We are happy to support the implementation of new plot creators, so feel free to post an issue to the project page [https://gitlab.com/utopia-project/dantro].

Note

After specializing a plot creator, make sure to let the PlotManager (or your specialization of it) know about your new creator class.
You can do so by extending its CREATORS mapping.

Also see the integration guide for an overview.

Philosophy and Design Concepts

dantro aims to be a general package for handling, transforming, and visualizing hierarchically organized data using a uniform interface.
This page gives an overview of key design concepts and use cases of dantro.

Please refer to the JOSS publication on dantro [https://doi.org/10.21105/joss.02316] for a wider overview.

	The Data Tree

	Customization

	Configurability

The Data Tree

At the center of dantro is the data tree which is used to represent hierarchically structured data.
Sticking with the tree analogy, there are the following counterparts in dantro:

	The root of the tree is given by the DataManager

	The branching points correspond to groups

	The leaves are represented by containers

By organizing all the data that is to be worked with into this structure, it is accessible in a uniform way.

Customization

With the wide range of possibilities that data can be represented in and the many different ways to arrive at a visualization of such data, one key design goal of dantro is to be easily customizable, such that it can be adapted to the required use cases.

Subsequently, one central aim of dantro is to not impose restrictions on:

	types of data to work with,

	ways to load data,

	ways to process data,

	or ways to plot data.

Typically, when desiring to achieve this, a package may provide an interface that the projects that use it have to adhere to.
However, any specializations going beyond the provided interface are then typically outsourced to the projects that require these specializations.
This may result in needing to write (and re-write) a lot of code, which might not only be redundant but can also become hard to maintain.

In order to avoid this, dantro not only supplies an interface, but also provides the means to easily specialize the data structures in order to fit the different needs of certain use cases.
It already provides a set of specializations and implements them in an efficient way.
Extensions that are potentially valuable to a wider audience can be integrated into the package to avoid redundant reimplementations.

Enter: Mixin Classes.

This refers to the idea that functionality can be added to classes using multiple inheritance [https://docs.python.org/3/tutorial/classes.html#multiple-inheritance].
This concept is widely used in dantro to allow easy customization.

For example, if a DataManager is desired that needs a certain load functionality, this can be specified simply by additionally inheriting a certain mixin class, e.g. the YamlLoaderMixin for loading YAML files:

from dantro import DataManager
from dantro.data_loaders import YamlLoaderMixin

class MyDataManager(YamlLoaderMixin, DataManager):
 """MyDataManager is a data manager that can load YAML files"""
 pass # Done here. Nothing else to do.

In dantro, this is used by containers, groups, data_loaders and even creators.
It allows adding functionality to classes in a granular fashion, customizing them for a particular use case.
At the same time, this approach makes it easy to retain a shared interface that allows storing all these heterogeneous objects in the same data tree.

For more information on how to specialize dantro for use in your project, see Specializing dantro Classes.

Configurability

Another core concept of dantro is to make as many parameters as possible accessible via a consistent, hierarchical, dict-based interface.
Ideally, relevant parameters can be passed through from the highest modularization level down to the lowest one.

This approach is used throughout dantro but is most apparent in the DataManager, the PlotManager, and the whole plotting interface.

Default Parameters

High configurability may also come with a burden, namely the need to specify parameters, which can be difficult if their function is unclear.
To overcome this, dantro specifies sensible default parameters wherever possible, such that in the easiest case no additional configuration needs to be given.

Furthermore, it is often possible to specify default parameters, like a set of default load configurations or default plots, which can be used to appropriately customize the involved objects to the needs of a project.
The default parameters can then be updated with new values wherever necessary.

The main idea of having different sets of default parameters is, that everything can be specified, but nothing need be.

How to cite dantro?

If you are using dantro in your work, please cite the following publication:

Citation Information

Yunus Sevinchan, Benjamin Herdeanu, Jeremias Traub (2020).
dantro: a Python package for handling, transforming, and visualizing hierarchically structured data. Journal of Open Source Software, 5(50), 2316.
https://doi.org/10.21105/joss.02316

@article{Sevinchan2020,
 doi = {10.21105/joss.02316},
 url = {https://doi.org/10.21105/joss.02316},
 year = {2020},
 publisher = {The Open Journal},
 volume = {5},
 number = {52},
 pages = {2316},
 author = {Yunus Sevinchan and Benjamin Herdeanu and Jeremias Traub},
 title = {dantro: a Python package for handling, transforming, and visualizing hierarchically structured data},
 journal = {Journal of Open Source Software}
}

The DataManager

The DataManager is at the core of dantro: it stores data in a hierarchical way, thus forming the root of a data tree, and enables the loading of data into the tree.

	Overview

	Data Loaders

	Load functions

	Loading Data

	The Load Configuration

	Example Load Configurations

	Defining a target path within the data tree

	Combining data entries

	Loading data as container attributes

	Prescribing tree structure and specializations

	Loading data as proxy

Overview

Essentially, the DataManager is a specialization of a OrderedDataGroup that is extended with data loading capabilities.

It is attached to a so-called “data directory” which is the base directory where data can be loaded from.

Data Loaders

To provide certain loading capabilities to the DataManager, the data_loaders mixin classes can be used.
To learn more about specializing the data manager to have the desired loading capabilities, see here.

By default, the following mixins are available via the AllAvailableLoadersMixin:

	
class AllAvailableLoadersMixin

	Bases: dantro.data_loaders.text.TextLoaderMixin, dantro.data_loaders.fspath.FSPathLoaderMixin, dantro.data_loaders.yaml.YamlLoaderMixin, dantro.data_loaders.pickle.PickleLoaderMixin, dantro.data_loaders.hdf5.Hdf5LoaderMixin, dantro.data_loaders.xarray.XarrayLoaderMixin, dantro.data_loaders.pandas.PandasLoaderMixin, dantro.data_loaders.numpy.NumpyLoaderMixin

A mixin bundling all data loaders that are available in dantro.
See the individual mixins for a more detailed documentation.

If you want all these loaders available in your data manager, inherit from
this mixin class and DataManager:

import dantro

class MyDataManager(
 dantro.data_loaders.AllAvailableLoadersMixin,
 dantro.DataManager,
):
 pass

All these are also available via the DATA_LOADERS registry.
The “vanilla” DataManager can access all these loaders directly, even without mixins.

Load functions

To see which data loading functions are available for a certain DataManager instance, you can use available_loaders.
The output of that property can be used as the loader argument to the load() method, see Loading Data.

In [1]: import dantro

In [2]: class MyDataManager(dantro.data_loaders.AllAvailableLoadersMixin, dantro.DataManager):
 ...: """My custom DataManager"""
 ...:

Instantiate it with some directory
In [3]: dm = MyDataManager("~")

Print the names of all available data loaders, i.e. the `loader` argument
In [4]: print("\n".join(dm.available_loaders))
fspath
fstree
hdf5
hdf5_as_dask
hdf5_proxy
numpy
numpy_binary
numpy_txt
pandas_csv
pandas_generic
pickle
pkl
plain_text
text
xr_dataarray
xr_dataset
yaml
yaml_to_object
yml
yml_to_object

Hint

To learn about available arguments for these loaders, have a look at the API reference for the corresponding mixin, e.g. starting from the AllAvailableLoadersMixin.

Missing a loader?

No problem.
You can easily specialize your data manager to include a custom loader.

Loading Data

To load data into the data tree, there are two main methods:

	The load() method loads a single so-called data entry.

	The load_from_cfg() method loads multiple such entries; the cfg refers to a set of configuration entries.

For example, having specialized a data manager, data can be loaded in the following way:

import dantro
from dantro.data_loaders import YamlLoaderMixin

class MyDataManager(YamlLoaderMixin, dantro.DataManager):
 """A DataManager specialization that can load YAML data"""

dm = MyDataManager(data_dir=my_data_dir)

Now, data can be loaded using the `load` command:
dm.load("some_data", # where to load the data to
 loader="yaml", # which loader to use
 glob_str="*.yml") # which files to find and load

Access it
dm["some_data"]
...

The Load Configuration

A core concept of dantro is to make a lot of functionality available via configuration hierarchies, which are well-representable using YAML configuration files.
This is also true for the DataManager, which can be initialized with a certain default load configuration, specifying multiple data entries to load.

When integrating dantro into your project, you will likely be in a situation where the structure of the data you are working with is known and more or less fixed.
In such scenarios, it makes sense to pre-define which data you would like to load, how it should be loaded, and where it should be placed in the data tree.

This load configuration can be passed to the DataManager during initialization using the load_cfg argument, either as a path to a YAML file or as a dictionary.
When then invoking load_from_cfg(), these default entries are loaded.
Alternatively, load_from_cfg() also accepts a new load config or allows updating the default load config.

Example Load Configurations

In the following, some advanced examples for specific load configurations are shown.
These illustrate the various ways in which data can be loaded into the data tree.
While most examples use only one single data entry, these can be readily combined into a common load configuration.

The basic setup for all the examples is as follows:

import dantro
from dantro.data_loaders import AllAvailableLoadersMixin

class MyDataManager(AllAvailableLoadersMixin, dantro.DataManager):
 """A DataManager specialization that can load various kinds of data"""

dm = MyDataManager(data_dir=my_data_dir, load_cfg=my_load_cfg)

The examples below are all structured in the following way:

	First, they show the configuration that is passed as the my_load_cfg parameter, represented as yaml.

	Then, they show the python invocation of the load_from_cfg() method, including the resulting data tree.

	Finally, they make a few remarks on what happened.

For specific information on argument syntax, refer to the docstring of the load() method.

Defining a target path within the data tree

The target_path option allows more control over where data is loaded to.

my_config_files:
 loader: yaml
 glob_str: 'config/*.yml'
 required: true

 # Use information from the file name to generate the target path
 path_regex: config/(\w+)_cfg.yml
 target_path: cfg/{match:}

dm.load_from_cfg(print_tree=True)
Will print something like:
Tree of MyDataManager, 1 member, 0 attributes
└─ cfg <OrderedDataGroup, 5 members, 0 attributes>
└┬ combined <MutableMappingContainer, 1 attribute>
├ defaults <MutableMappingContainer, 1 attribute>
├ machine <MutableMappingContainer, 1 attribute>
├ update <MutableMappingContainer, 1 attribute>
└ user <MutableMappingContainer, 1 attribute>

Remarks:

	With the required argument, an error is raised when no files were matched by glob_str.

	With the path_regex argument, information from the path of the files can be used to generate a target_path within the tree, using the {match:} format string.
In this example, this is used to drop the _cfg suffix, which would otherwise appear in the data tree.

	With a target_path given, the name of the data entry (here: my_config_files) is decoupled from the position where the data is loaded to.
Without that argument and the regex, the config files would have been loaded as my_config_files/combined_cfg, for example.

Hint

The regular expression in path_regex is not limited to a single match, it can also have multiple matching groups, which can be unnamed or named groups.
See _prepare_target_path() for more options and examples.

Combining data entries

The target_path option also allows combining data from different data entries, e.g. when they belong to the same measurement time:

Load the (binary) measurement data for each day
measurement_data:
 loader: hdf5
 glob_str: measurements/day*.hdf5
 required: true
 path_regex: measurements/day(\d+).hdf5
 target_path: measurements/{match:}/data

Load the parameter files, containing information about each day
measurement_parameters:
 loader: yaml
 glob_str: measurements/day*_params.yml
 required: true
 path_regex: measurements/day(\d+)_params.yml
 target_path: measurements/{match:}/params

dm.load_from_cfg(print_tree="condensed")
Will print something like:
Tree of MyDataManager, 1 member, 0 attributes
└─ measurements <OrderedDataGroup, 42 members, 0 attributes>
└┬ 000 <OrderedDataGroup, 2 members, 0 attributes>
└┬ params <MutableMappingContainer, 1 attribute>
└ data <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <NumpyDataContainer, int64, shape (126,), 0 at…
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 89), 0 attributes>
├ sensor001 <NumpyDataContainer, float64, shape (3, 85), 0 attributes>
├ sensor002 <NumpyDataContainer, float64, shape (3, 94), 0 attributes>
├ (18 more) ...
├ sensor021 <NumpyDataContainer, float64, shape (3, 80), 0 attributes>
└ sensor022 <NumpyDataContainer, float64, shape (3, 99), 0 attributes>
└ temperatures <NumpyDataContainer, float64, shape (126,), 0 attributes>
├ 001 <OrderedDataGroup, 2 members, 0 attributes>
└┬ params <MutableMappingContainer, 1 attribute>
└ data <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <NumpyDataContainer, int64, shape (150,), 0 attributes>
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 99), 0 attributes>
├ sensor001 <NumpyDataContainer, float64, shape (3, 85), 0 attributes>
├ ...

Loading data as container attributes

In some scenarios, it is desirable to load some data not as a regular entry into the data tree, but as a container attribute.
Continuing with the example from above, we might want to load the parameters directly into the container for each day.

Load the (binary) measurement data for each day
measurement_data:
 loader: hdf5
 glob_str: measurements/day*.hdf5
 required: true
 path_regex: measurements/day(\d+).hdf5
 target_path: measurements/{match:}

Load the parameter files as container attributes
params:
 loader: yaml
 glob_str: measurements/day*_params.yml
 required: true
 load_as_attr: true
 unpack_data: true
 path_regex: measurements/day(\d+)_params.yml
 target_path: measurements/{match:}

dm.load_from_cfg(print_tree="condensed")
Will print something like:
Tree of MyDataManager , 1 member, 0 attributes
└─ measurements <OrderedDataGroup, 42 members, 0 attributes>
└┬ 000 <OrderedDataGroup, 3 members, 1 attribute>
└┬ precipitation <NumpyDataContainer, int64, shape (165,), 0 attributes>
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 92), 0 attributes>
├ sensor001 <NumpyDataContainer, float64, shape (3, 91), 0 attributes>
├ sensor002 <NumpyDataContainer, float64, shape (3, 93), 0 attributes>
├ (18 more) ...
├ sensor021 <NumpyDataContainer, float64, shape (3, 83), 0 attributes>
└ sensor022 <NumpyDataContainer, float64, shape (3, 97), 0 attributes>
└ temperatures <NumpyDataContainer, float64, shape (165,), 0 attributes>
├ 001 <OrderedDataGroup, 3 members, 1 attribute>
└┬ precipitation <NumpyDataContainer, int64, shape (181,), 0 attributes>
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 84), 0 attributes>
├ sensor001 <NumpyDataContainer, float64, shape (3, 85), 0 attributes>
├ ...

Check attribute access to the parameters
for cont_name, data in dm["measurements"].items():
 params = data.attrs["params"]
 assert params["day"] == int(cont_name)

Note the 000 group showing one more attribute than in previous examples; this is the params attribute.

Remarks:

	By using load_as_attr, the measurement parameters are made available as container attribute and become accessible via its attrs property.
(This is not to be confused with regular python object attributes.)

	When using load_as_attr, the entry name is used as the attribute name.

	The unpack_data option makes the stored object a dictionary, rather than a MutableMappingContainer, reducing one level of indirection.

Prescribing tree structure and specializations

Sometimes, load configurations become easier to handle when an empty tree structure is created prior to loading.
This can be done using the DataManager‘s create_groups argument, also allowing to specify custom group classes, e.g. to denote a time series.

Load the (binary) measurement data for each day
measurement_data:
 loader: hdf5
 glob_str: measurements/day*.hdf5
 required: true
 path_regex: measurements/day(\d+).hdf5
 target_path: measurements/{match:}

from dantro.groups import TimeSeriesGroup

dm = MyDataManager(data_dir=my_data_dir, out_dir=False,
 load_cfg=my_load_cfg,
 create_groups=[dict(path="measurements",
 Cls=TimeSeriesGroup)])

dm.load_from_cfg(print_tree="condensed")
Will print something like:
Tree of MyDataManager , 1 member, 0 attributes
└─ measurements <TimeSeriesGroup, 42 members, 0 attributes>
└┬ 000 <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <NumpyDataContainer, int64, shape (165,), 0 attributes>
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <NumpyDataContainer, float64, shape (3, 92), 0 attributes>
├ sensor001 <NumpyDataContainer, float64, shape (3, 91), 0 attributes>
├ sensor002 <NumpyDataContainer, float64, shape (3, 93), 0 attributes>
├ ...

Remarks:

	Multiple paths can be specified in create_groups.

	Paths can also have multiple segments, like my/custom/group/path.

	The dm['measurements'] entry is now a TimeSeriesGroup, and thus represents one dimension of the stored data, e.g. the precipitation data.

Loading data as proxy

Sometimes, data is too large to be loaded into memory completely.
For example, if we are only interested in the precipitation data, the sensor data should not be loaded into memory.

Dantro provides a mechanism to build the data tree using placeholder objects, so-called proxies.
The following example illustrates that, and furthermore uses the dask [https://dask.org] framework to allow delayed computations.

Load the (binary) measurement data for each day
measurement_data:
 loader: hdf5
 glob_str: measurements/day*.hdf5
 required: true
 path_regex: measurements/day(\d+).hdf5
 target_path: measurements/{match:}
 load_as_proxy: true
 proxy_kwargs:
 resolve_as_dask: true

from dantro.containers import XrDataContainer
from dantro.mixins import Hdf5ProxySupportMixin

class MyXrDataContainer(Hdf5ProxySupportMixin, XrDataContainer):
 """An xarray data container that allows proxy data"""

class MyDataManager(AllAvailableLoadersMixin, dantro.DataManager):
 """A DataManager specialization that can load various kinds of data
 and uses containers that supply proxy support
 """
 # Configure the HDF5 loader to use the custom xarray container
 _HDF5_DSET_DEFAULT_CLS = MyXrDataContainer

dm = MyDataManager(data_dir=my_data_dir, out_dir=False,
 load_cfg=my_load_cfg)
dm.load_from_cfg(print_tree="condensed")
Will print something like:
Tree of MyDataManager , 1 member, 0 attributes
└─ measurements <OrderedDataGroup, 42 members, 0 attributes>
└┬ 000 <OrderedDataGroup, 3 members, 0 attributes>
└┬ precipitation <MyXrDataContainer, proxy (hdf5, dask), int64, shape (165,), 0 attributes>
├ sensor_data <OrderedDataGroup, 23 members, 1 attribute>
└┬ sensor000 <MyXrDataContainer, proxy (hdf5, dask), float64, shape (3, 92), 0 attributes>
├ sensor001 <MyXrDataContainer, proxy (hdf5, dask), float64, shape (3, 91), 0 attributes>
├ sensor002 <MyXrDataContainer, proxy (hdf5, dask), float64, shape (3, 93), 0 attributes>
├ ...

Work with the data in the same way as before; it's loaded on the fly
total_precipitation = 0.
for day_data in dm["measurements"].values():
 total_precipitation += day_data["precipitation"].sum()

Remarks:

	By default, the NumpyDataContainer and XrDataContainer classes do not provide proxy support.
This is why a custom class needs to be specialized to allow loading the data as proxy.

	Furthermore, the DataManager‘s Hdf5LoaderMixin needs to be told to use the custom data container class.

For details about loading large data using proxies and dask, see Handling Large Amounts of Data.

Data Processing

Through the data_ops module, dantro supplies some useful functionality to generically work with function calls.
This is especially useful for numerical operations.

The data_ops module can be used on its own, but it is certainly worth to have a look at its use as part of the Data Transformation Framework or for plot data selection.
For practical examples, of combining data processing operations with the data transformation framework, have a look at Data Transformation Examples and Example Plots.

	The operations database

	Available operations

	Applying operations

	Registering operations

	The is_operation() decorator

	Customizing database tools

	Troubleshooting

	Missing an operation?

	Why does my operation fail?

The operations database

The core of data_ops is the operations database.
It is defined simply as a mapping from an operation name to a callable.
This makes it very easy to access a certain callable.

A quite expansive set of functions and numerical operations is already defined per default, see the data operations reference page.

Hint

If you want to set up your own operations database, the corresponding functions all allow to specify the database to use for registration:
Simply pass the _ops argument to the corresponding function.

Available operations

To dynamically find out which operations are available, use the available_operations() (importable from dantro.data_ops) function, which also includes the names of additionally registered operations:

from dantro.data_ops import available_operations

Show all available operation names
all_ops = available_operations()

Search for the ten most similar ones to a certain name
mean_ops = available_operations(match="mean", n=10)

An up-to-date version of dantro’s default operations database can be found on this page.

Applying operations

The task of resolving the callable from the database, passing arguments to it, and returning the result falls to the apply_operation() function.
It also provides useful feedback in cases where the operation failed, e.g. by including the given arguments into the error message.

However, chances are that you will be using the data operations from within other parts of dantro, e.g. the data transformation framework or for plot data selection.

Registering operations

To register additional operations, use the register_operation() function:

from dantro.data_ops import register_operation

Define an operation
def increment_data(data, *, increment = 1):
 """Applies some custom operations on the given data"""
 return data + increment

Register it under its own name: "increment_data"
register_operation(increment_data)

Can also give it a different name
register_operation(increment_data, name="my_ops.increment")

For new operations, a name should be chosen that is not already in use.
If you are registering multiple custom operations, consider using a common prefix for them.

Note

It is not necessary to register operations that are importable!
For example, you can instead use a combination of the import and call operations to achieve this behavior.
With the from_module operation, you can easily retrieve a function from a module; see get_from_module().
There are shortcuts for imports from commonly-used modules, e.g. np., xr. and scipy..

Operations should only be registered if you have implemented a custom operation or if the above does not work comfortably.

The is_operation() decorator

As an alternative to register_operation(), the is_operation() decorator can be used to register a function with the operations database right where its defined:

from dantro.data_ops import is_operation

Operation name deduced from function name
@is_operation
def some_operation(data, *args):
 # ... do stuff here ...
 return data

Custom operation name
@is_operation("do_stuff")
def some_operation_with_a_custom_name(foo, bar):
 pass

Overwriting an operation of the same name
@is_operation("do_stuff", overwrite_existing=True)
def actually_do_stuff(spam, fish):
 pass

Customizing database tools

There is the option to customize the tools that work with or on the operations database.
For instance, if it is desired to use a custom operations database, the toolchain can be adapted as follows:

from typing import Union, Callable

Privately import the functions that are to be adapted
from dantro.data_ops import (
 register_operation as _register_operation,
 is_operation as _is_operation,
 available_operations as _available_operations,
 apply_operation as _apply_operation,
)

Your operations database object that is used as the default database.
MY_OPERATIONS = dict()

Define a registration function with `skip_existing = True` as default
and evaluation of the default database
def my_reg_func(*args, skip_existing=True, _ops=None, **kwargs):
 _ops = _ops if _ops is not None else MY_OPERATIONS
 return _register_operation(*args, skip_existing=skip_existing,
 _ops=_ops, **kwargs)

Define a custom decorator that uses the custom registration function
def my_decorator(arg: Union[str, Callable] = None, /, **kws):
 return _is_operation(arg, _reg_func=my_reg_func, **kws)

Adapt the remaining tool chain
def available_operations(*args, _ops=None, **kwargs):
 _ops = _ops if _ops is not None else MY_OPERATIONS
 return _available_operations(*args, _ops=_ops, **kwargs)

def apply_operation(*args, _ops=None, **kwargs):
 _ops = _ops if _ops is not None else MY_OPERATIONS
 return _apply_operation(*args, _ops=_ops, **kwargs)

Usage of the decorator or the other functions is the same:
@my_decorator
def some_operation(d):
 # do stuff here
 return d

@my_decorator("my_operation_name")
def some_other_operation(d):
 # do stuff here
 return d

print(", ".join(available_operations()))

some_operation, my_operation_name

Warning

The TransformationDAG does not automatically use the custom operations database and functions!
Being able to specify this is a task that remains to be implemented; contributions welcome.

Troubleshooting

Missing an operation?

If you are missing a certain operation, there are multiple ways to go about this, either by importing it or by defining one ad-hoc.

	If it is a function call, e.g. from numpy [https://numpy.org/doc/stable/reference/index.html#module-numpy], use the np. operation to easily import a callable (using get_from_module() under the hood).
The same can be done for other frequently-used packages via the xr., pd., scipy. and nx. operations.

	Use the from_module (get_from_module()) or import (import_module_or_object()) operations for arbitrary imports.

	Use the lambda (generate_lambda()) operation to ad-hoc define a lambda.

	Register your own data operation.

	If you are using data operations as part of the data transformation framework, e.g. during plotting, consider adding a meta-operation; that one will not be part of the operations database but will behave in an equivalent way.

	Make a contribution to dantro [https://gitlab.com/utopia-project/dantro] to add an operation by default.

Why does my operation fail?

In case you get DataOperationFailed or similar errors, there are a few things you can do:

	Carefully read the error message

	Is the number and name of the given arguments correct?

	Inspect the given traceback

	Is there something more insightful further up in the chain of errors?

	It is worth scrolling through it a bit more, as this may be deeply nested.

	If you do not get a traceback (e.g. when using the PlotManager), make sure you are in debug mode.

	Have a look at the operation definition and docstrings

	Many functions are merely ad-hoc defined lambdas; see the data operations database for more info on how an operation is defined.

	The implementation for dantro-based operations can be found in dantro.data_ops.

	Still stuck with an error? Might this be a bug? Consider opening an issue in the dantro GitLab project [https://gitlab.com/utopia-project/dantro].

Hint

If using the data operations as part of the data transformation framework, note that you can also visualize the context in which the operation failed.

As part of the plotting framework, these visualization may be automatically created alongside your (potentially failing) plot.

Data Transformation Framework

The uniform structure of the dantro data tree is the ideal starting point to allow more general application of transformation on data.
This page describes dantro’s data transformation framework, revolving around the TransformationDAG class.
It is sometimes also referred to as DAG framework or data selection and transformation framework and finds application in the plotting framework.

This page is an introduction to the DAG framework and a description of its inner workings.
To learn more about its practical usage, make sure to look at the Data Transformation Examples.

	Overview

	The Transformation Syntax

	The TransformationDAG

	Basics

	Advanced Referencing

	Computing Results

	Selecting from the DataManager

	The define interface

	Individually adding nodes

	Minimal Syntax

	Operation Hooks

	Graph representation and visualization

	Full syntax specification of a single transformation node

	Meta-Operations

	Defining meta-operations

	Examples

	Remarks & Caveats

	Error Handling

	Upstream errors

	Error handling within select

	The File Cache

	Background

	Configuration

	Remarks

Related pages:

	DAG Syntax Operation Hooks
	Available Hooks
	expression

	Data Transformation Examples
	Curve Fitting

Overview

The purpose of the transformation framework is to be able to generally apply mathematical operations on data that is stored in a dantro data tree.
Specifically, it makes it possible to define transformations without touching actual Python code.
To that end, a meta language is defined that makes it possible to define almost arbitrary transformations.

In dantro terminology, a transformation is defined as a set consisting of an operation and some arguments.
Say, for example, we want to perform a simple addition of two quantities, 1 and 2, we are used to writing 1 + 2.
To define a transformation using the meta language, this would translate to a set consisting of the add operation and two (ordered) arguments: 1 and 2.

Now, typically transformations don’t come on their own and are not nearly as trivial as the above.
You might desire to compute a + b, where both a and b are results of previous transformations.

This can be represented as a directed acyclic graph, or short: DAG.
For the example above, the graph is rather small:

 a:(…) b:(…)
 ^ ^
 \ /
 \ /
(add, a, b)

The nodes in this graph represent transformations.
These nodes can have labels, e.g. a and b, which are called references or tags in dantro terminology.
As illustrated by the example above, the tags can be used in place of arguments to denote that the result of a previous transformation (with the corresponding label) should be used.

The directed edges in the graph represent dependencies.
The acyclic in DAG is required such that the computation of a transformation result does not end in an infinite loop due to a circular dependency.

The Transformation and TransformationDAG dantro classes implement exactly this structure, making the following features available:

	Easy and generic access to data stored in an associated DataManager

	Definition of arbitrary DAGs via dictionary-based configurations

	Syntax optimized to make specification via YAML easy

	Shorthand notations available

	New and custom operations can be registered

	There are no restrictions on the signature of operations

	Caching of transformations is possible, avoiding re-calculation of computationally expensive transformations

	Transformations are uniquely representable by a hash

The Transformation Syntax

This section will guide you through the syntax used to define transformations.
It will explain the basic elements and inner workings of the mini-language created for the purpose of the DAG.

Note

This explanation goes into quite some detail; and it’s quite important to understand the underlying structures of the
If you feel like you would like to jump ahead to see what awaits you, have a look at the Minimal Syntax.

The TransformationDAG

The structure a user (you!) is mainly interacting with is the TransformationDAG class.
It takes care to build the DAG by creating Transformation objects according to the specification you provided.
In the following, all YAML examples will represent the arguments that are passed to the TransformationDAG during initialization.

Basics

Ok, let’s start with the basics: How can transformations be defined?
For the sake of simplicity, let’s only look at transformations that are fully independent of other transformations.

Explicit syntax

The explicit syntax to define a single Transformation via the TransformationDAG looks like this:

transform:
 - operation: add
 args: [1, 2]
 kwargs: {}

The transform argument is the main argument to specify transformations.
It accepts a sequence of mappings.
Each entry of the sequence contains all arguments that are needed to create a single Transformation.

As you see, the syntax is very close to the above definition of what a dantro transformation contains.

Note

The args and kwargs arguments can also be left out, if no positional or keyword arguments are to be passed, respectively.
This is equivalent to setting them to ~ or empty lists / dicts.

Specifying multiple transformations

To specify multiple transformations, simply add more entries to the transform sequence:

transform:
 - operation: add
 args: [3, 4]
 - operation: sub
 args: [8, 2]
 - operation: mul
 args: [6, 7]

Assigning tags

Nodes of the DAG all have a unique identifier in the form of a hash string, which is a 32 character hexadecimal string.
While it can be used to identify a transformation, the easiest way to refer to it is by using a so-called tag.

Tags are simply plain text pointers to a specific hash, which in turn denotes a specific transformation.
To add a tag to a transformation, use the tag key.

transform:
 - operation: add
 args: [3, 4]
 tag: some_addition
 - operation: sub
 args: [8, 2]
 tag: some_substraction
 - operation: mul
 args: [6, 7]
 tag: the_answer

Note

No two transformations can have the same tag.

Advanced Referencing

In the examples above, all transformations were independent of each other.
Having completely independent and disconnected nodes, of course, defeats the purpose of having a DAG structure.

Now let’s look at proper, non-trivial DAGs, where individual transformations use the results of other transformations.

Referencing other Transformations

Other transformations can be referenced in three ways, each with a corresponding Python class and an associated YAML tag:

	DAGReference and !dag_ref: This is the most basic and most explicit reference, using the transformations’ hash to identify a reference.

	DAGTag and !dag_tag: References by tag are the preferred references. They use the plain text name specified via the tag key.

	DAGNode and !dag_node: Uses the ID of the node within the DAG. Mostly for internal usage!

Note

When the DAG is built, all references are brought into the most explicit format: DAGReference s.
Thus, internally, the transformation framework works only with hash references.

The best way to refer to other transformations is by tag: there is no ambiguity, it is easy to define, and it allows you to easily build a DAG tree structure.
A simple example with three nodes would be the following:

transform:
 - operation: add
 args: [3, 4]
 tag: some_addition
 - operation: sub
 args: [8, 2]
 tag: some_substraction
 - operation: mul
 args:
 - !dag_tag some_addition
 - !dag_tag some_substraction
 tag: the_answer

Which is equivalent to:

some_addition = 3 + 4
some_substraction = 8 - 2
the_answer = some_addition * some_substraction

References can appear within the positional and the keyword arguments of a transformation.
As you see, they behave quite a bit like variables behave in programming languages; the only difference being: you can’t reassign a tag and you should not form circular dependencies.

Using the result of the previous transformation

When chaining multiple transformations to each other and not being interested in the intermediate results, it is tedious to always define tags:

transform:
 - operation: mul
 args: [1, 2]
 tag: f2
 - operation: mul
 args: [!dag_tag f2, 3]
 tag: f3
 - operation: mul
 args: [!dag_tag f3, 4]
 tag: f4
 - operation: mul
 args: [!dag_tag f4, 5]
 tag: f5

Let’s say, we’re only interested in f5.
The only thing we want is that the result from the previous transformation is carried on to the next one.
The with_previous_result feature can help in this case: It adds as the first positional argument a reference to the previous node.
Thus, it is no longer necessary to define a tag.

transform:
 - operation: mul
 args: [1, 2]
 - operation: mul
 args: [3]
 with_previous_result: true
 - operation: mul
 args: [4]
 with_previous_result: true
 - operation: mul
 args: [5]
 with_previous_result: true
 tag: f5

Note that the args, in that case, specify one fewer positional argument.

Warning

Using !dag_node in your specifications is not recommended.
Use it only if you really know what you’re doing.

In case the result of the previous transformation should not be used in place of the first positional argument but somewhere else, there is the !dag_prev YAML tag, which creates a node reference to the previous node:

transform:
 - operation: define
 args: [10]
 - operation: sub
 args: [0, !dag_prev]
 - operation: div
 args: [1, !dag_prev]
 - operation: power
 args: [10, !dag_prev]
 tag: my_result

Note

Notice the space behind !dag_prev.
The YAML parser might complain about a character directly following the tag, like …, !dag_prev].

Computing Results

To compute the results of the DAG, invoke the TransformationDAG‘s compute() method.

It can be called without any arguments, in which case the result of all tagged transformations will be computed and returned as a dict.
If only the result of a subset of tags should be computed, they can also be specified.

Computing results works as follows:

	Each tagged Transformation is visited and its own compute() method is invoked

	A cache lookup occurs, attempting to read the result from a memory or file cache.

	The transformations resolve potential references in their arguments: If a DAGReference is encountered, the corresponding Transformation is resolved and that transformation’s compute() method is invoked. This traverses all the way up the DAG until reaching the root nodes which contain only basic data types (that need no computation).

	Having resolved all references into results, the arguments are assembled, the operation callable is resolved, and invoked by passing the arguments.

	The result is kept in a memory cache. It can additionally be stored in a file cache to persist to later invocations.

	The result object is returned.

Note

Only nodes that are tagged can be part of the results.
Intermediate results still need to be computed, but it will not be part of the results dict.
If you want an intermediate result to be available there, add a tag to it.

This also means: If there are parts of the DAG that are not tagged at all, they will not be reached by any recursive argument lookup.

Hint

Use the compute_only argument of compute() to specify which tags are to be computed.
If not given, all tags will be computed, unless they start with a . or _ (these are so-called “private” tags).

To compute private tags directly, include them in compute_only.

You can also force computation of a node, even if untagged, by adding force_compute to the transformation, see below.

Hint

To learn which parts of the computation require the most time, e.g. in order to evaluate whether to cache the result, inspecting the DAG profile statistics can be useful.
The TransformationDAG‘s verbosity attribute controls how extensively statistics are written to the log output.
By default (verbosity 1), only per-node statistics are emitted.
For levels >= 2, per-operation statistics are shown alongside.

Resolving and applying operations

Let’s have a brief look into how the operation argument is actually resolved and how the operation is then applied.

This feature is not specific to the DAG, but the DAG uses the data_ops module, which implements a database of available operations and the apply_operation() function to apply an operation.
Basically, this is a thin wrapper around a function lookup and its invocation.

For a full list of available data operations, see here.

Hint

You can also use the import operation to retrieve a callable (or any other object) via a Python import and then use the call operation to invoke it.
These two operations are combined in the import_and_call operation:

transform:
 - operation: import_and_call
 args: [numpy.random, randint]
 kwargs:
 low: 0
 high: 10
 size: [2, 3, 4]

To specifically register additional operations, use the register_operation() function.
This should only be done for operations that are not easily usable via the import and call operations.

Forcing computation of individual nodes

Sometimes, it’s useful to force the computation of an individual node.
To that end, simply set the force_compute option for a transformation:

transform:
 - operation: div
 args: [1, 0]
 force_compute: true

In this example, the node will always be computed, obviously leading to a ZeroDivisionError.

A few remarks:

	Force-computed tags are computed before the tags specified in compute_only.

	Typical use case is during debugging, where you want to make sure that an operation really is carried out.

	Unlike tagged nodes, their results are not available in the results dict.
Even if the node is tagged, it will only appear in the results dict if it is part of compute_only.

Selecting from the DataManager

The above examples are trivial in that they do not use any actual data but define some dummy values.
This section shows how data can be selected from the DataManager that is associated with the TransformationDAG.

The process of selecting data is not different than other transformations.
It makes use of the getitem operation that would also be used for regular item access, and it uses the fact that the data manager is available via the dm tag.

Note

The DataManager is also identified by a hash, which is computed from its name and its associated data directory path.
Thus, managers for different data directories have different hashes.

The select interface

As selecting data from the DataManager is a common use case, the TransformationDAG supports the select argument besides the transform argument.

The select argument expects a mapping of tags to either strings (the path within the data tree) or further mappings (where more configurations are possible):

select:
 some_data: path/to/some_data
 more_data:
 path: path/to/more_data
 # ... potentially more kwargs
transform: ~

The results dict will then have two tags, some_data and more_data, each of which is the selected object from the data tree.

Note

The above example is translated into the following basic transformation specifications:

transform:
 - operation: getitem
 args: [!dag_tag dm, path/to/more_data]
 tag: more_data
 - operation: getitem
 args: [!dag_tag dm, path/to/some_data]
 tag: some_data

Note that the order of operations is sorted alphabetically by the tag specified under the select key.

Directly transforming selected data

Often, it is desired to apply some sequential transformations to selected data before working with it.
As part of the select interface, this is also possible:

select:
 square_increment:
 path: path/to/some_data
 with_previous_result: true
 transform:
 - operation: squared
 - operation: increment

 some_sum:
 path: path/to/more_data
 transform:
 - operation: getattr
 args: [!dag_prev , data]
 - operation: sub
 args: [0, !dag_prev]
 - operation: .sum
 args: [!dag_prev]
transform:
 - operation: add
 args: [!dag_tag square_increment, !dag_tag some_sum]
 tag: my_result

Notice the difference between square_increment, where the result is carried over, and some_sum, where the reference has to be specified explicitly.
As visible there, within the select interface, the with_previous_result option can also be specified such that it applies to a sequence of transformations that are based on some selection from the data manager.

Note

The parser expands this syntax into a sequence of basic transformations.

It does so before any other transformations from the transform argument are evaluated. Thus, whichever tags are defined there are not available from within select!

Changing the selection base

By default, selection happens from the associated DataManager, tagged dm.
This option can be controlled via the select_base property, which can be set both as argument to __init__ and afterward via the property.
The property expects either a DAGReference object or a valid tag string.

If set, all following select arguments are using that reference as the basis, leading to getitem operations on that object rather than on the data manager.

As the select arguments are evaluated before any transform operations, only the default tags are available during initialization.
To widen the possibilities, the TransformationDAG allows the base_transform argument during initialization; this is just a sequence of transform specifications, which are applied before the select argument is evaluated, thus allowing to select some object, tag it, and use that tag for the select_base argument.

Note

The select_path_prefix argument offers similar functionality, but merely prepends a path to the argument.
If possible, the select_base functionality should be preferred over select_path_prefix as it reduces lookups and cooperates more nicely with the file caching features.

Background Information

Internally, when the select specification is evaluated, it is set to select against a special tag select_base; by default, this is the same as the dm special tag.

Effectively, the select feature always selects starting from the object the select_base property points to at the time the nodes are added to the DAG.
In other words, if the select_base is changed after the nodes were added, this will not have any effect.

For meta-operations this means that the base of selection is not relevant at definition of the meta-operations; the base gets evaluated when the meta-operation is used.

The define interface

So far, we have seen two ways to add transformation nodes to the DAG: via transform or via select.
These are based either on directly adding the nodes, giving full control, or adding transformations based on a selection of data.

The define interface is a combintion of these two approaches: same as select, it revolves around the final tag that’s meant to be attached to the definition, but it does not require a data selection like select does.

Let’s look at an example that combines all these ways of adding transformations:

define:
 exponent: 4 # directly define some object
 days_to_seconds_factor: # use a sequence of TransformationsDAG
 - expression: "60 * 60 * 24"
 - float
select:
 some_data: path/to/some_data
 more_data: path/to/more_data
transform:
 - add: [!dag_tag some_data, !dag_tag more_data]
 - mul: [!dag_prev , !dag_tag days_to_seconds_factor]
 - print
 - pow: [!dag_prev , !dag_tag exponent]
 tag: my_result

Here, the exponent as well as some conversion factor tags are defined not ad-hoc but separately via the define interface.
As can be seen in the example, there are two ways to do this:

	If providing a list or tuple type, it is interpreted as a sequence of transformations, accepting the same syntax as transform.
After the final transformation, another node is added that sets the specified tag, days_to_seconds_factor in this example.

	If prodiving any other type, it is interpreted directly as a definition, adding a single transformation node that holds the given argument, the integer 4 in the case of the exponent tag.

Note

The define argument is evaluated before the other two.
Subsequently, tags defined via define can be used within select or transform, but not the other way around.

Hint

In the context of plotting, the define interface has an important benefit over the select and transform syntax for adding nodes to the DAG:
It is dictionary-based, which makes it very easy to recursively update its content; this is very useful for Plot Configuration Inheritance.

⚠️ Note: When using the DAG for plot data selection, not all arguments can be exposed on the top-level of the plot configuration; the define argument is one of the arguments that is nested in a DAG-specific config entry dag_options:

my_plot:
 dag_options:
 define:
 exponent: 4
 # ...

 select:
 # ...
 transform:
 - # ...

Individually adding nodes

Nodes can be added to TransformationDAG during initialization; all the examples above are written in that way.
However, transformation nodes can also be added after initialization using the following two methods:

	add_node() adds a single node and returns its reference.

	add_nodes() adds multiple nodes, allowing the define, select, and transform arguments in the same syntax as during initialization.
Internally, this parses the arguments and calls add_node().

Minimal Syntax

To make the definition a bit less verbose, there is a so-called minimal syntax, which is internally translated into the explicit and verbose one documented above.
This can make DAG specification much easier:

select:
 some_data: path/to/some_data
 more_data: path/to/more_data
transform:
 - add: [!dag_tag some_data, !dag_tag more_data]
 - increment
 - print
 - pow: [!dag_prev , 4]
 tag: my_result

This DAG will have three custom tags defined: some_data, more_data and my_result.
Computation of the my_result tag is equivalent to:

my_result = ((some_data + more_data) + 1) ** 4

As can be seen above, the minimal syntax gets rid of the operation, args and kwargs keys by allowing to specify it as <operation name>: <args or kwargs> or even as just a string <operation name>, without further arguments.

With arguments, <operation name>: <args or kwargs>

When passing a sequence (e.g. [foo, bar]) the arguments are interpreted as positional arguments; when passing a mapping (e.g. {foo: bar}), they are treated as keyword arguments.

Hint

In this shorthand notation it is still possible to specify the respective “other” types of arguments using the args or kwargs keys.
For example:

transform:
 - my_operation: [foo, bar]
 kwargs: { some: more, keyword: arguments }
 - my_other_operation: {foo: bar}
 args: [some, positional, arguments]

Without arguments, <operation name>

When specifying only the name of the operation as a string (e.g. increment and print), it is assumed that the operation accepts only a single positional argument and no other arguments.
That argument is automatically filled with a reference to the result of the previous transformation, i.e.: the result is carried over.

For example, the above transformation with the increment operation would be translated to:

operation: increment
args: [!dag_prev]
kwargs: {}
tag: ~

Operation Hooks

The DAG syntax parser allows attaching additional parsing functions to operations, which can help to supply a more concise syntax.
These so-called operation hooks are described in more detail here.
As an example, the expression operation can be specified much more conveniently with the use of its hook.
Taking the example from above, the same can be expressed as:

select:
 some_data: path/to/some_data
 more_data: path/to/more_data
transform:
 - expression: (some_data + more_data + 1) ** 4
 tag: my_result

In this case, the hook automatically extracts the free symbols (some_data and more_data) and translates them to the corresponding DAGTag objects.
Effectively, it parses the above to:

select:
 some_data: path/to/some_data
 more_data: path/to/more_data
transform:
 - expression: (some_data + more_data + 1) ** 4
 kwargs:
 symbols:
 some_data: !dag_tag some_data
 more_data: !dag_tag more_data
 tag: my_result

If you care to deactivate a hook, set the ignore_hooks flag for the operation:

operation: some_hooked_operation
args: [foo, bar]
ignore_hooks: true

Warning

Failing operation hooks will emit a logger warning, informing about the error; they do not raise an exception.
While this might not lead to a failure during parsing, it might lead to an error during computation, e.g. when you are relying on the hook to have adjusted the operation arguments.

Depending on the operation arguments, there can be cases where the hook will not be able to perform its function because it lacks information that is only available after a computation.
In such cases, it’s best to deactivate the hook as described above.

Graph representation and visualization

The TransformationDAG has the ability to represent the internally used directed acyclic graph as a networkx.classes.digraph.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph].
By calling the generate_nx_graph() method, the Transformation objects are added to a graph and the dependencies between these transformations are added as directed edges.

This can help to better understand the generated DAG and is useful not only for debugging but also for optimization, as it allows to show the associated profiling information.

Hint

It can be configured whether the edges should represent the “flow” of results through the DAG (edges pointing towards the node that requires a certain result) or whether they should point towards a node’s dependency.

By default, generate_nx_graph() has edges_as_flow set to True, thus having edges point in the effective direction of computation.

Visualization

In addition to generating the graph object, the visualize() method can generate a visual output of the DAG:

[image: DAG visualization]
In this example, the - my_result - node is tagged at the bottom and the arrows come from the transformations that these operations depend on.
Effectively, calculation starts at the top, with data being read from the dm node, the associated DataManager, then following the arrows towards the my_result node and applying the specified operations like squared, increment and so on.

The circles in the background show the status of the computation, green meaning that a node’s result was computed as expected; other colors and their corresponding status are detailed in the legend.
The node status can indicate where in a DAG computation routine an error occurred.
To control this, have a look at the show_node_status argument and the annotation_kwargs, where the legend can be controlled.

Note

Operation arguments cannot easily be shown as it would quickly become too cluttered.
For that reason, the visualization typically restricts itself to showing the operation name, the result (if computed), and the tag (if set).

See visualize() for more info.

Hint

If using the data transformation framework for plot data selection, visualization is deeply integrated there; see DAG Visualization.

Hint

DAG visualization works much better with pygraphviz [https://pygraphviz.github.io] installed, because it gives access to more capable layouting algorithms.

Export

To post-process the DAG data elsewhere, use the standalone export_graph() function.

Full syntax specification of a single transformation node

To illustrate the possible arguments for creating a transformation node via add_node(), the following block contains a full specification of available keys and arguments.
It is a combination of arguments to Transformation and arguments that are handled by TransformationDAG, which is aware of the whole DAG.

Note that this is the explicit representation, which is a bit verbose.
Except for operation, args, kwargs and tag, all entries are set to default values.

operation: some_operation # The name of the operation
args: # Positional arguments
 - !dag_tag some_result # Reference to another result
 - second_arg
kwargs: # Keyword arguments
 one_kwarg: 123
 another_kwarg: foobar
salt: ~ # Is included in the hash; set a value here
 # if you would like to provoke a cache miss
fallback: ~ # May only be given if ``allow_failure`` is
 # also set, in which case it specifies a
 # fallback value (or reference) to use
 # instead of the operation result.

All arguments _below_ are NOT taken into account when computing the hash
of this transformation. Two transformations that differ _only_ in the
arguments given below are considered equal to each other.

tag: my_result # The tag of this transformation. Optional.
force_compute: ~ # Used to force computation of this node
 # without needing to assign a tag.

allow_failure: ~ # Whether to allow this transformation to
 # fail during computation or resolution of
 # the arguments (i.e.: upstream error).
 # Special options are: log, warn, silent

memory_cache: True # If False, will not keep the computed
 # result in memory but either re-compute it
 # or load it from the file cache.

file_cache: # File cache options
 read: # Read-related options
 enabled: false # Whether to read from the file cache
 always: false # If true, will always read from the file
 # cache, regardless of whether the result
 # was already stored in the memory cache
 # or just computed.
 load_options:
 unpack: ~ # Whether to unpack the result from the
 # dantro container it was loaded into.
 # If None, will do so only for numeric
 # types (xarray and numpy arrays)
 # ... further arguments are passed on to DataManager.load
 write: # Write-related options
 enabled: false # Whether to write to the file cache

 # If writing is enabled, the following options determine whether a
 # cache file should actually be written (does not always make sense)
 always: false # If true, skips other conditions below and
 # ensures that a cache file is created.
 # NOTE: This will not *overwrite* an
 # existing cache file by default; see the
 # ``allow_overwrite`` parameter for that.
 allow_overwrite: false # If false, will not write if a cache file
 # already exists (even with ``always`` set)
 min_size: ~ # If given, the result needs to have at
 # least this size (in bytes) for it to be
 # written to a cache file.
 max_size: ~ # Like min_size, but upper boundary
 min_compute_time: ~ # If given, a cache file is only written
 # if the computation time of this node on
 # its own, i.e. without the computation
 # time of the dependencies exceeded this
 # value.
 min_cumulative_compute_time: ~ # Like min_compute_time, but actually
 # taking into account the time it took to
 # compute results of the dependencies.

 # Options used when storing a result in the cache
 storage_options:
 raise_on_error: false # Whether to raise if saving failed
 attempt_pickling: true # Whether to attempt pickling if saving
 # via a specific save function failed
 pkl_kwargs: {} # Passed on to pkl.dumps
 ignore_groups: true # Whether to attempt storing dantro groups
 # ... additional arguments passed on to the specific saving function

Note

This does not reflect any arguments made available by the DAG parser!
Features like the minimal syntax or the operation hooks are handled prior to the initialization of a Transformation object.

Hint

Often the easiest way to learn is by example.
Make sure to check out the Data Transformation Examples page, where you will find practical examples that go beyond what is shown here.

Meta-Operations

In essence, the transformation framework, as described above, can be used to define a sequence of data operations, just like a sequential program code could do.
Now, what if parts of these operations are used multiple times?
In a typical computer program, one would define a function to modularize part of the program.
The equivalent construct in the data transformation framework is a so-called meta-operation, which can be characterized in the following way:

	It can have input arguments that define which objects it should work on

	It consists of a number of operations that transform the arguments in the desired way

	It has one (and only one) output, the return value

How are meta-operations defined?
Meta-operations can be defined in just the same way as regular transformations are defined, with some additional syntax for defining positional arguments (args) and keyword arguments (kwargs).
Let’s look at an example:

Define meta-operations
meta_operations:
 # Compute (x**2 + 1) for a positional input argument x
 square_plus_one:
 - pow: [!arg 0, 2]
 - add: [!dag_prev , 1] # <-- this operation's result is the "return value"

 # Select some data and directly compute its mean
 select_and_compute_mean:
 select:
 data:
 path: !kwarg to_select
 transform:
 - .mean: !dag_tag data

This defines two meta-operations: square_plus_one (with one positional argument) and select_and_compute_mean (with the to_select keyword argument).
During initialization of TransformationDAG, these can be passed using the meta_operations argument.

How are meta-operations used?
In exactly the same way as all regular data operations: simply define their name as the operation argument of a transformation.

Use the meta-operations within the regular data transformation, alongside
the already-existing data operations
transform:
 - select_and_compute_mean:
 to_select: path/to/some_data
 tag: some_data_mean
 - select_and_compute_mean:
 to_select: path/to/more_data
 tag: more_data_mean
 - add: [!dag_tag some_data_mean, !dag_tag more_data_mean]
 - square_plus_one: !dag_prev
 tag: result

Here, one of the meta-operations is used to compute two mean values from a selection; these are then added together via the regular add operation; finally, the other meta-operation is applied to that sum, yielding the result.
While the individual meta-operations are not complex in themselves, this illustrates how repeatedly invoked transformations can be modularized.

Note

The examples in these sections use the meta_operations top-level entry to illustrate the definition of meta-operations.
The transform and/or select top-level entries are used to denote how meta-operations can be invoked (in the same way as regular operations).

As a brief summary:

	Meta-operations are defined via the meta_operations argument of TransformationDAG, using the same syntax as for other transformations.

	They can specify positional and keyword arguments and have a return value.

	They can be used for the operation argument of any transformation, same as other available data operations.

	Meta-operations allow modularization and thereby simplify the definition of data transformations.

Hint

To use meta-operations for plot data selection, define them under the dag_options.meta_operations key of a plot configuration.

Defining meta-operations

The example above already gave a glimpse into how to define meta-operations.
In many ways, this works exactly the same as defining transformations, e.g. under the transform argument.

Specifying arguments

Like Python functions, meta-operations can have two kinds of arguments:

	Positional arguments, defined using the !arg <position> YAML tag

	Keyword arguments, defined using the !kwarg <name> YAML tag

These can be used anywhere inside the meta-operation specification and serve as placeholders for expected arguments.
Let’s look at an example:

meta_operations:
 my_equation: # [(a + b) * c - d] / e
 - add: [!kwarg a, !kwarg b]
 - mul: [!dag_prev , !kwarg c]
 - sub: [!dag_prev , !kwarg d]
 - div: [!dag_prev , !kwarg e]

transform:
 - my_equation:
 a: 1
 b: 10
 c: 8
 d: 4
 e: 2
 tag: the_answer

When the meta-operation gets translated into nodes, the corresponding positional and keyword arguments are replaced with the values from the args and kwargs of the transformation specification.

Some remarks:

	Positional and keyword arguments can be mixed

	Arguments can be referred to multiple times within a meta-operation definition

	The set of positional arguments, if specified, needs to include all integers between zero and the highest defined !arg <position>.

	Optional arguments and variable positional or keyword arguments are not supported (yet).

Return values

Meta-operations always have one and only one return value: the last defined transformation.

Hint

To have “multiple” return values, e.g. to return an intermediate result, aggregate objects into a dict that can then be unpacked outside of the meta-operation.
For an example, see Aggregate return values.

Using select within meta-operations

The definitions inside meta_operations can have two possible formats:

meta_operations:
 # A -- as list ==> transformations only
 a_plus_b_cubed:
 - add: [!arg 0, !arg 1]
 - pow: [!dag_prev , 3]

 # B -- as dict ==> selections _and_ transformations
 select_and_square:
 select:
 data:
 path: !kwarg to_select
 transform:
 - squared: !dag_tag data

transform:
 - a_plus_b_cubed: [1, 2]
 tag: result1
 - select_and_square:
 to_select: path/to/some_data
 tag: result2

As can be seen above, the dict-based definition supports using the select interface.
Importantly, this supports parametrization: simply use !arg or !kwarg inside the select specification, e.g. to make the path of the to-be-selected object an argument to the meta-operation.

Internal tags

When defining simple meta-operations, passing the output of the previous operation through to the next one using !dag_prev usually suffices to connect operations.
Such meta-operations are essentially linear DAGs.

However, to define non-linear meta-operations (or: general DAGs), it needs to be possible to use the result of any previously specified transformation.
For that purpose, the tag entry and the !dag_tag YAML tag can be used, same as in the usual specification of references between transformations:

meta_operations:
 my_meta_operation: # [(x+1) * (x-1)] / (2*y)
 - add: [!arg 0, +1]
 tag: left
 - add: [!arg 0, -1]
 tag: right
 - mul: [!dag_tag left, !dag_tag right]
 tag: top
 - mul: [!arg 1, 2]
 - div: [!dag_tag top , !dag_prev]

transform:
 - my_meta_operation: [9, 2] # [(9+1) * (9-1)] / (2*2) == 20
 tag: result

Internal tags are all tag definitions inside the meta_operation definition.
These tags are solely accessible within the meta-operation and will not be available as results later on (only the return value will).
In the above example, the left, right, and top tags are internal tags and they are referenced using the already-known !dag_tag YAML tag.

This is in contrast to the regular tag definitions (the result tag in the example), which is a regular tag.
Effectively, the regular tag is attached to the last transformation of the meta-operation, here being the div operation.

Note

In order to avoid silent errors and reduce unexpected behaviour, all internally defined tags need to be used within the meta-operation.

Argument default values

Meta operation arguments !arg and !kwarg can also have default values.
These are defined by passing a list of length 2 to the YAML tags (instead of a scalar number for positional arguments or name for keyword arguments).

For instance, if you want an optional keyword argument foo, define it as:

!kwarg [foo, my_default_value]

Equivalently for positional arguments:

!arg [0, my_default_value]

Let’s look at an example where the my_increment meta-operation would increment by one per default or by some other value, if desired:

meta_operations:
 my_increment:
 - add: [!arg 0, !arg [1, 1]]

transform:
 - my_increment: [0]
 tag: one
 - my_increment: !dag_prev
 tag: two
 - my_increment: [!dag_prev , 8]
 tag: ten

The above meta-operation is equivalent to the following Python function with one required positional-only argument and one optional positional-only argument:

def my_increment(x, delta = 1, /):
 return x + delta

one = my_increment(0)
two = my_increment(one)
ten = my_increment(two, 8)

For a larger example that is using keyword arguments, see below.

Hint

Default values need not be scalar, they can be anything — as long as they do not contain any Placeholder objects like tags, references, or other argument definitions.

Warning

To clearly distinguish which arguments are optional and which ones are required, make sure that any !arg or !kwarg with a default value has a default value for all those occurrences of the arguments in your meta-operation:

There should never be a !arg [0, 42] and !arg 0 in your meta-operation at the same time.

Examples

prime_multiples

The following example performs operations on the arguments and then uses internal tags (!dag_tag) to connect their output to a result.

meta_operations:
 prime_multiples:
 # Define powers of primes 2, 3, 5, and 7
 - pow: [2, !kwarg [base2, 0]]
 tag: b2
 - pow: [3, !kwarg [base3, 0]]
 tag: b3
 - pow: [5, !kwarg [base5, 0]]
 tag: b5
 - pow: [7, !kwarg [base7, 0]]
 tag: b7
 # Compute their product
 - np.: [prod, [!dag_tag b2, !dag_tag b3, !dag_tag b5, !dag_tag b7]]

transform:
 - prime_multiples:
 base2: 2
 base3: 1
 # base5: 0
 base7: 3
 tag: result

As can be seen in the following plot, the meta-operation is unpacked into individual transformation nodes:

[image: DAG visualization]

Hint

The DAG visualization also shows which operation
originated from which meta-operation (in parentheses below the operation name).
Here, all originate from prime_multiples.

Aggregate return values

In this example, a dict operation is used to return multiple results from a meta-operation.

meta_operations:
 # Given some input data (as positional argument), compute a bunch of
 # statistical quantities. To return them, aggregate them into a dict.
 compute_stats:
 # Make sure it's an xarray object
 - xr.DataArray: !arg 0
 tag: data

 # Compute the statistics
 - .mean: !dag_tag data
 tag: mean
 - .std: !dag_tag data
 tag: std
 - .median: !dag_tag data
 tag: median
 - .min: !dag_tag data
 tag: min
 - .max: !dag_tag data
 tag: max
 - .quantile: [!dag_tag data, 0.25]
 tag: q25
 - .quantile: [!dag_tag data, 0.75]
 tag: q75

 # Aggregate into a dict as return value
 - dict:
 mean: !dag_tag mean
 std: !dag_tag std
 median: !dag_tag median
 min: !dag_tag min
 max: !dag_tag max
 q25: !dag_tag q25
 q75: !dag_tag q75

Usage example: select some data and get some of the desired statistics
select:
 some_data: path/to/some_data
transform:
 - compute_stats: !dag_tag some_data
 tag: some_stats

 - getitem: [!dag_tag some_stats, mean]
 tag: some_mean
 - getitem: [!dag_tag some_stats, std]
 tag: some_std
 - getitem: [!dag_tag some_stats, median]
 tag: some_median

Note that by aggregating results into an object, the DAG will not be able to discern whether a branch of the compute_stats meta-operation is actually needed, thus potentially computing more results than required.
In order to avoid computing more nodes than necessary, aggregated return values should be used sparingly; ideally, use them only to return an intermediate result.

This packing and unpacking can also be observed in the DAG plot:

[image: DAG visualization]

my_gauss

This example shows how to define a mathematical expression (also see: operation hooks) and exposing its symbols as arguments of the meta-operation:

meta_operations:
 # A meta-operation that defines a gaussian
 my_gauss:
 - expression: a * exp(- (x - mu)**2 / (2 * sigma**2))
 kwargs:
 symbols:
 x: !kwarg x
 a: !kwarg a
 mu: !kwarg mu
 sigma: !kwarg sigma

transform:
 # Compute the Gaussian for two values
 - my_gauss:
 a: 1.
 mu: 0.
 sigma: 1.
 x: 0.
 tag: default_gaussian
 - my_gauss:
 a: 1.
 mu: 23.
 sigma: 10.
 x: 23.
 tag: wide_gaussian_moved

For this case, it makes a lot of sense to use default values for meta-operation arguments, thus reducing the number of keyword arguments that need to be specified:

meta_operations:
 # A meta-operation that defines a gaussian
 my_gauss:
 - expression: a * exp(- (x - mu)**2 / (2 * sigma**2))
 kwargs:
 symbols:
 x: !kwarg x
 a: !kwarg [a, 1.]
 mu: !kwarg [mu, 0.]
 sigma: !kwarg [sigma, 1.]

transform:
 # Compute the Gaussian for two values
 - my_gauss:
 x: 0.
 tag: default_gaussian
 - my_gauss:
 x: 23.
 a: 1.
 mu: 23.
 sigma: 10.
 tag: wide_gaussian_moved

Hint

If you do not want to define default arguments, e.g. because you want to control the shared defaults via some YAML-based logic, you can also reduce the number of repeated arguments using YAML anchors and inheritance:

transform:
 - my_gauss: &my_gauss_defaults # <-- defines the defaults
 a: 1.
 mu: 0.
 sigma: 1.
 x: 0.
 tag: default_gaussian
 - my_gauss:
 <<: *my_gauss_defaults # <-- re-use defaults ...
 a: 10. # ... and update with new values
 tag: scaled_gaussian
 - my_gauss:
 <<: *my_gauss_defaults
 mu: -42.
 tag: moved_gaussian

Remarks & Caveats

Note the following remarks regarding the definition and use of meta-operations:

	Inside meta-operations, no outside tags except the “special” tags (dag, dm, select_base) can be used.
Further inputs should be handled by adding arguments to the meta-operation as described above.

	When using the select syntax in the definition of a meta-operation and aiming to define an argument, note that the long syntax needs to be used:

select:
 # Correct
 some_data:
 path: !kwarg some_data_path

 # WRONG! Will not work.
 other_data: !kwarg other_data_path

	When defining a meta-operation and using an operation that makes use of an operation hook, the tags created by the hook need to be explicitly exposed as arguments, otherwise there will be an Unused tags ... error.
To expose them, there are two ways:

	Use them internally by adding a define, dict, or list operation prior to the operation that uses the hook; then explicitly specify them as arguments there.

	In the case of the expression operation hook, use the kwargs.symbols entry to directly define them as arguments, as done in the my_gauss example above.

	A meta-operation always adds a so-called “result node”, which uses the pass operation to make the result of the meta-operation available.
When using a meta-operation, the arguments tag and file_cache (see below) as well as any error handling arguments are added only to this result node.
For all other transformation nodes of a meta-operation, the following holds:

	They may have only internal tags attached

	They may define their own file_cache behavior; if they do not, the default values for file caching are used.

	They are free to define their own error handling behavior.

Error Handling

Operations are not always guaranteed to succeed.
To define more robust operations, some form of error handling is required, akin to try-except blocks in Python.

In the data transformation framework, the allow_failure option handles failing data operations and allows to specify a fallback value that should be used as result in case the operation failed.
Let’s have a look:

 - float: "inf"
 - div: [1, 0] # 1 / 0 --> raises ZeroDivisionError
 allow_failure: true
 fallback: !dag_prev
 tag: result

Here, the ZeroDivisionError is avoided and, instead, the value of the previous node (which defines a float infinity value) is used.
Subsequently, the result will be the Python floating-point inf.

Note

The allow_failure argument also accepts a few string-like values which control the verbosity of the output in case of failure:

	log does the same as True: print a prominent log message that informs about the failed operation and the use of the fallback.

	warn: emits a Python warning

	silent: suppresses the message altogether

Example:

 - float: "inf"
 - div: [1, 0]
 allow_failure: silent # can also be: True, log, warn, False
 fallback: !dag_prev

For debugging, make sure to not use silent.

Hint

The fallback argument accepts not only scalars, but also sequences or mappings, which in turn may contain !dag_tag references.

Upstream errors

Sometimes, an error only becomes relevant in a later operation and it makes sense to defer error handling to that point.
The analogy to Python exception handling would be to handle the error not directly where it occurs but in an outside scope.

This is also possible within the error handling framework, because allow_failure pertains to both the computation of the specified operation as well as the resolution of its arguments.
As the resolution of arguments triggers the computation of dependent nodes (and their dependencies, and so forth), an upstream error may also be caught in a downstream node:

 # Example input: assume that this may also be the output from previous
 # operations which are used to calculate something else ...
 - define: -1.23
 tag: some_value
 - define: +1
 tag: some_other_value

 # Perform some potentially problematic operations with these ...
 - import_and_call: [math, log10, !dag_tag some_value] # --> ValueError
 tag: log10_value

 - import: [np, pi]
 tag: pi
 - sub: [!dag_tag some_other_value, 1.]
 - div: [!dag_tag pi, !dag_prev] # --> ZeroDivisionError
 tag: pi_over_some_other_value

 # ... leading to the result
 - add: [!dag_tag log10_value, !dag_tag pi_over_some_other_value]
 allow_failure: true
 fallback: 42
 tag: my_result

In this example, the nodes tagged log10_value and pi_over_some_other_value are both problematic but do not specify any error handling.
However, we may only be interested in my_result, which depends on those two transformation results.
Let’s say, we specified compute_only: [my_result].
What would happen in such a case?

	The transformation tagged my_result is looked up in the DAG.

	The transformation’s arguments are recursively resolved, triggering lookup of the dependencies log10_value and pi_over_some_other_value.

	The referenced transformations would in turn look up their arguments and finally lead to the application of the problematic operations (div and math.log10), which will fail for the arguments in this example.

	An error is raised during those operations.

	The error propagates back to the my_result transformation.

	With allow_failure: true, the error is caught and the fallback value is used instead.

Warning

The above example only works with compute_only: [my_result].
If the problematic tags were to be computed directly, e.g. via compute_only: all, they would raise an error because they do not specify any error handling themselves.

Note

This example is purely for illustration!
Typically, one would define these operations using numpy and they would not raise exceptions but issue a RuntimeWarning and use nan as result.

Error handling within select

The select operation may also specify a fallback.
This fallback will only be applied to the getitem operation which is used to look up the path from the specified selection base:

select:
 some_data: path/to/some_data
 mean_data:
 path: some/invalid/path # The underlying `getitem` will fail ...
 allow_failure: true # ... but is allowed to.
 fallback: [[1, 2, 3]] # Instead, this fallback value is used.
 transform:
 - np.mean # ... which still works for a mean

transform:
 - expression: (some_data + mean_data + 1) ** 4
 tag: my_result

Hint

The transform elements can of course again specify their own fallbacks.

Limitations

There are some limitations to using allow_failure within select.
Mainly, specifying a fallback may be difficult in practice because other tags may not be available yet at the time where the DAG is populated with the select arguments.

The tags specified by select are added in alphabetical order and before any transformations from transform are added to the DAG.
Subsequently, lookups within one select field are only possible from within select and for fields that appeared sooner in that alphabetical order.
(See this issue [https://gitlab.com/utopia-project/dantro/-/issues/265] for a potential improvement to this behavior.)

Using a tagged reference in the fallback works in the following example because '_some_fallback_data' < 'mean_data':

select:
 _some_fallback_data: path/to/some_data
 mean_data:
 path: some/invalid/path
 allow_failure: true
 fallback: !dag_tag _some_fallback_data
 transform:
 - np.mean

transform:
 - expression: (mean_data + 1) ** (-0.5)
 tag: my_result

Hint

We advise to not build overly complex fallback structures within select, e.g. using tagged fallbacks which in turn have tagged fallbacks and so forth.
While possible, it may easily becomes tedious to build or maintain.

If you require more advanced error handling for certain operations, consider wrapping them into your own data operation.
See Resolving and applying operations for more information.

The File Cache

Caching of already computed results is a powerful feature of the TransformationDAG class.
The idea is, that if some specific computationally expensive transformation already took place previously, it should not be necessary to compute it again.

Background

To understand the file cache, it’s first necessary to understand the internal handling of transformations.

Within the DAG, each transformation is fully identified by its hash.
If the hashes of two transformations are the same it means the operation is the same and all arguments are the same.

All Transformation objects are stored in an objects database, which maps a hash to a Python object.
In effect, there is one and only one Transformation object associated with a certain hash.

Say, a DAG contains two nodes, N1 and N2, with the same hash.
Then the object database contains a single transformation T, which is used in place of both nodes N1 and N2.
Thus, if the result of one of the nodes is computed, the other should already know the result and not need to re-compute it.

That is what is called the memory cache: once a result is computed, it stays in memory, such that it need not be recomputed again.
This is useful not only in the above situation but also when doing DAG traversal during computation.

The file cache is not much different than the memory cache: it aims to make computation results persist to reduce computational resources.
With the file cache, the results can persist over multiple invocations of the transformations framework.

Configuration

Cache directory

Cache files need to be written in some place.
This can be specified via the cache_dir argument during the initialization of a TransformationDAG; see there for details.

By default, the cache directory is called .cache and is located inside the data directory associated with the DAG’s DataManager.
It is created once it is needed.

Default file cache arguments

File cache behavior can be configured separately for each Transformation, as can be seen from the full syntax specification above.

However, it’s often useful to have default values defined that all transformations share.
To do so, pass a dict to the file_cache_defaults argument.
In the simplest form, it looks like this:

file_cache_defaults:
 read: true
 write: true
transform:
 - # ...

This enables both reading from the cache directory and writing to it.
When passing booleans, to read and write, the default behavior is used.
To more specifically configure the behavior, again see the full syntax specification above.

When specifying additional file_cache arguments within transform, the values specified there recursively update the ones given by file_cache_defaults.

Note

The getitem operations defined via the select interface always have caching disabled; it makes no sense to cache objects that have been looked up directly from the data tree.

Warning

The file cache arguments are not taken into account for computation of the transformations’ hash.
Thus, if there are two transformations with the same hash, only the additional file cache arguments given to the first one are taken into account; the second ones have no effect because the second transformation object is discarded altogether.

Warning

If it is desired to have two transformations with different file cache options, the salt can be used to perturb its hash and thus force the use of the additional file cache arguments.

Reading from the file cache

Generally, the best computation is the one you don’t need to make.
If there is no result in memory and reading from cache is enabled, the cache directory is searched for a file that has as its basename the hash of the transformation that is to be computed.

If that is the case, the DataManager is used to load the data into the data tree and set the memory cache.
(Note that this is Python, i.e. it’s not a copy but the memory cache is a reference to the object in the data tree.)

By default, it is not attempted to read from the cache directory.
See above on how to enable it.

Note

When desiring to use the caching feature of the transformation framework, the employed DataManager needs to be able to load numerical data.
If you are not already using the AllAvailableLoadersMixin, consider adding NumpyLoaderMixin, XarrayLoaderMixin, and PickleLoaderMixin to your DataManager specialization.

Hint

Sometimes it can be desired to always read from the file cache, e.g. to make use of the load_options argument.
In that case, set the following arguments to make sure that a cache file will be written after a computation.

file_cache:
 read:
 enabled: true
 always: true
 load_options:
 chunks: true
 write: true

Note that the computed result may still remain in the memory cache.
See Transformation on how to not keep it in memory.

Writing to the file cache

After a computation result was either looked up from the cache or computed, it can be stored in the file cache.
By default, writing to the cache is not enabled, either. See above on how to enable it.

When writing a cache file, many options can trigger that a transformation’s result is written to a file.
For example, it might make sense to store only results that took a very long time to compute or that are very large.

Once it is decided that a result is to be written to a cache file, the corresponding storage function is invoked.
It creates the cache directory, if it does not already exist, and then attempts to save the result object using a set of different storage functions.

There are specific storage functions for numerical data: numpy arrays are stored via the numpy.save function, which is also used to store NumpyDataContainer objects.
Another specific storage function takes care of xarray.DataArray and XrDataContainer objects.

If there is no specific storage function available, it is attempted to pickle the object.

Note

It is not currently possible to store BaseDataGroup-derived objects in the file cache.

Remarks

	The structure of the DAG – a Merkle tree, or: hash tree – ensures that each node’s hash depends on all parent nodes’ hashes. Thus, all downstream hashes will change if some early operation’s arguments are changed.

	The transformation framework can not distinguish between arguments that are relevant for the result and those who might not; all arguments are taken into account in computing the hash.

	It might not always make sense to read from or write to the cache, depending on how long it took to compute, how much data is to be stored and loaded and how long that takes.

	Dividing up large transformations into many small transformations will increase the possibility of cache hits; however, this also increases the memory footprint of the DAG by potentially requiring more memory for intermediate objects and more read/write operations to the file cache.

	There may never be more than one file in the cache directory that has the same basename (i.e.: hash) as another file. Such situations need to be resolved manually by deleting all but one of the corresponding files.

	There is no harm in just deleting the cache directory, e.g. when it gets too large.

DAG Syntax Operation Hooks

DAG syntax operation hooks (short: operation hooks) help to make the specification of data transformations more concise and powerful.

A hook consists of a callable that is attached to a certain operation name, e.g. expression, and is invoked after the DAG syntax parser extracted all arguments.
The hook can manipulate the given operation, args and kwargs arguments prior to the creation of the Transformation object.

	Available Hooks

	expression

For the integration into the transformation framework, see here.

Available Hooks

The following hooks are available by default:

In [1]: ", ".join(dantro.data_ops.DAG_PARSER_OPERATION_HOOKS)
Out[1]: 'expression'

The section titles below use the operation name of the hooks they are triggered by.

expression

The op_hook_expression() prepares arguments for the expression() operation, making it more convenient to perform symbolic math operations with entities defined in the DAG.

It tries to extract the free symbols from the expression string and turns them into DAGTag objects of the same name.
For example, with the tags a, b, and c:

transform:
 - define: 2
 tag: a
 - define: 3
 tag: b
 - define: 1.5
 tag: c
 - expression: a**b / (c - 1.)
 tag: result

The parser and the hook transform the expression operation node into:

operation: expression
args: ["a**b / (c - 1.)"]
kwargs:
 symbols:
 a: !dag_tag a
 b: !dag_tag b
 c: !dag_tag c

This alleviates specifying the kwargs.symbols argument manually, thus saving a lot of typing.

Note

The define operation in the above example is just a trivial example of an operation; instead of defining extra DAG nodes, it would be much easier to simply add the parameters to the expression directly.

Typically, nodes a, b, c would be the result of some prior, more complicated expression, e.g using any of the other available operations.

Warning

If using the expression operation as part of a meta-operation, make sure to refer to these tags inside the meta-operation in some way.
See the Remarks & Caveats there for more information.

Furthermore, if any of the symbols are called prev or previous_result, they are turned into DAGNode references to the previous node, similar to the !dag_prev YAML tag:

transform:
 - define: 3
 tag: x
 - define: 2. # ... or something more complicated
 - expression: 1 - prev/(1 + x) # Reusing ``prev`` here. :tada:
 tag: result

Hint

The hook also makes the expression operation more robust in cases where with_previous_result is set.
As the previous result is inserted as first positional argument, this would normally produce invalid syntax for the expression() operation.

By default, the expression() operation will attempt to cast the result to a floating point value, which is more compatible with other operations.
However, this default prohibits to work with the symbolic math features of sympy [https://sympy.org].
If you would like to keep symbolic expressions, specify the astype argument accordingly.

transform:
 - np.array: [[1, 2, 3]]
 tag: arr
 - .mean: !dag_tag arr
 tag: a
 - .sum: !dag_tag arr
 tag: b
 - define: 10
 tag: c

 - operation: expression
 args: [a**2]
 kwargs:
 astype: ~
 tag: equation_one
 - operation: expression
 args: [b**2]
 kwargs:
 astype: ~
 tag: equation_two

 - expression: (equation_one + equation_two) * c**2
 tag: result

In the DAG visualization this would look like this:

[image: DAG visualization]

Data Transformation Examples

This page provides examples of data processing via the data transformation framework.

All examples are tested.

	Curve Fitting

Curve Fitting

For fitting a curve to some data, the following operations can be combined:

	The lambda operation to define the model function, see generate_lambda()

	The curve_fit operation, which is an alias for scipy.optimize.curve_fit; see scipy documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html]

select:
 data_to_fit: path/to/elephant_ts # 1D data with `time` dimension

transform:
 # Define the model function as a lambda
 - lambda: "lambda x, a0, a1, a2, a3, a4, a5: a5*x**5 + a4*x**4 + a3*x**3 + a2*x**2 + a1*x**1 + a0"
 tag: elephant_f

 # Extract the independent variable (here: the `time` coordinates)
 - .coords: [!dag_tag data_to_fit, time]
 tag: times

 # Do the fit; result will be that of `scipy.optimize.curve_fit`
 - curve_fit:
 - !dag_tag elephant_f
 - !dag_tag times
 - !dag_tag data_to_fit
 tag: fit_results

Note

The polynomial above of course doesn’t quite achieve fitting an elephant to the data, as John von Neumann wanted to show.
However, see this blog post [https://www.johndcook.com/blog/2011/06/21/how-to-fit-an-elephant/] on how this can actually be achieved.

Handling Large Amounts of Data

When working with large amounts of data, memory is often a limitation.
Dantro provides capabilities to work with data even when it cannot be loaded into memory at the same time.

It does so, by providing a general proxy mechanism, that allows postponing the actual loading of data up to the point where the data is actually needed.
Furthermore, for numerical data, it integrates with the dask [https://dask.org] framework, which allows delayed [https://docs.dask.org/en/latest/delayed.html] computations.

	Data Proxies

	Proxy resolution

	Example: Hdf5DataProxy

	Dask Support

	Using dask with HDF5 data

Data Proxies

To handle large amounts of data, dantro provides so-called proxy support for AbstractDataContainer-derived objects.
They work in the following way:

	Data is not loaded directly into the container, but a proxy object is created

	The proxy object stores instructions on how the data can be loaded at a later point

	This allows building a data tree without loading any actual data

	Once the actual data becomes necessary, proxy resolution takes place: the data is loaded and the placeholder object is replaced by the actual data

Objects that were loaded as proxy are marked with (proxy) in the tree representation.

To make containers capable of proxy support, the ProxySupportMixin (or a derived specialization) can be used.
Additionally, the data_loaders need to be able to create proxy objects during the loading procedure.

Proxy resolution

A few more words about proxy resolution:
Proxies are meant to be drop-in replacements, not changing the workflow or the interface in any way.

The ProxySupportMixin takes care of this capability by specializing the data property of containers:

	Instead of directly returning the underlying data, it checks if a placeholder object is present.

	If so, it resolves that proxy object by invoking its resolve() method

	The proxy resolves the data

	The resolved data is stored in the container and the proxy object is either discarded or retained, depending on the configuration of ProxySupportMixin

In this minimal setting, proxies only get resolved upon explicit calls to the data property.
Some containers, e.g. the NumpyDataContainer, use the ForwardAttrsToDataMixin which leads to all attribute calls (that are not explicitly defined in the container) being forwarded to the data.
In effect, the dantro container becomes a very thin wrapper around the actual interface, and the proxy gets resolved whenever that underlying interface is accessed.
This is an important aspect of making the data proxies drop-in replacements.

Example: Hdf5DataProxy

The Hdf5LoaderMixin provides proxy loading capabilities for HDF5 data.
Instead of loading the datasets directly into memory, the structure and metadata of the HDF5 file are used to generate the tree, but for data containers, Hdf5DataProxy objects are placed.

Additionally, it stores metadata about the dataset, e.g. its shape, data type, dimensionality, dataset attributes.
Accessing those metadata attributes of the resulting container does not result in proxy resolution; they are resolved only when the actual data is needed.

To load HDF5 data as proxy:

	Customize a container using the Hdf5ProxySupportMixin

	Customize a DataManager with the Hdf5LoaderMixin

	Pass the load_as_proxy argument to the regular hdf5 loader or, as a shortcut to achieving the same: use the hdf5_proxy loader

Dask Support

There will be scenarios in which the data that is to be analyzed exceeds the limits of the physical memory of the machine.
Here, proxy objects don’t help, as they only postpone the loading.

This is often the case for numerical data, typically represented in dantro by the XrDataContainer, which are based on xarray [http://xarray.pydata.org/en/stable/] data structures.
As xarray provides an interface to the dask [https://dask.org] framework and its delayed computation capabilities, dantro can make use of that interface as well.

The dask package allows working on chunked data, e.g. HDF5 data, and only load those parts that are necessary for a calculation, afterward freeing up the memory again.
Additionally, it does clever things by first building a tree of operations that are to be performed, then optimizing that tree, and only when the actual numerical result is needed, does the data need to be loaded.
Furthermore, as the data is chunked, it can potentially profit from parallel computation.
More info on that can be found in the corresponding section of the xarray documentation [https://xarray.pydata.org/en/stable/dask.html].

Dask can be used in dantro when the following requirements are fulfilled:

	The data that is to be loaded is representable by xarray data structures

	The data is stored in a chunked fashion, allowing to read it in parts

	There is a dantro data loader that allows creating proxy objects

	There is a dantro data proxy type that supports resolving objects as dask objects

The following example shows how this works with HDF5-based data.

Using dask with HDF5 data

To use dask when loading HDF5 data, arguments need to be passed to the Hdf5DataProxy that it should not be resolved as the actual data, but as a dask representation of it.
This is controlled by the resolve_as_dask argument.

HDF5-data is loaded using the Hdf5LoaderMixin, which allows passing arguments to the proxy via the proxy_kwargs argument.
In other words, the following load() command will lead to HDF5 data being loaded as proxies that will later be resolved as dask objects:

dm = DataManager("~/my_data")
dm.load("some_data", loader="hdf5_proxy", glob_str="*.hdf5",
 proxy_kwargs=dict(resolve_as_dask=True))

In the tree representation of the loaded data, you will see dask-supporting proxies marked as proxy (hdf5, dask).

Importantly, the dask-supporting proxies also are drop-in replacements for regular proxies; hence, behavior and interfaces do not change, but there is the added capability of working with huge amounts of data when necessary.

For a more extensive example, have a look at this load configuration example.

Data Handling FAQs

This page gathers frequently asked questions regarding the dantro data handling interface.

	The DataManager

	Data groups and containers

	Can I add any object to the data tree?

	The Data Transformation Framework

	I get HDF5 or NetCDF4 errors when using the cache. How can I resolve this?

Aside from these FAQs, make sure to have a look at other documentation pages related to data handling.

Note

If you would like to add a question here, we are happy about contributions!
Please visit the project page [https://gitlab.com/utopia-project/dantro] to open an issue or get more information about contributing.

The DataManager

No FAQs yet. Feel free to ask the first one!

Data groups and containers

Can I add any object to the data tree?

In principle, yes. But the object needs to be wrapped to concur with the required interface.

The easiest way to achieve this for leaves of the data tree is by using the ObjectContainer or the PassthroughContainer:

from dantro.containers import ObjectContainer, PassthroughContainer
from dantro.groups import OrderedDataGroup

The object we want to add to the tree
some_object = ("foo", b"bar", 123, 4.56, None)

Use an ObjectContainer to store any object and provide simple item access
cont1 = ObjectContainer(name="my_object_1", data=some_object)

assert cont1.data is some_object
assert cont1[0] == "foo"

For passing attribute calls through, use the PassthroughContainer:
cont2 = PassthroughContainer(name="my_object_2", data=some_object)

assert cont2.count("foo") == 1

Add them to a group
grp = OrderedDataGroup(name="my_group")
grp.add(cont1, cont2)

As demonstrated above, these container types provide a thin wrapping around the stored object.

Background: Objects that make up the data tree need to concur to the AbstractDataContainer or AbstractDataGroup interface.
While such a type can also be constructed fully manually (see Specializing dantro Classes), many use cases can be covered by combining an already existing type from the containers or groups modules with some mixins.

The Data Transformation Framework

These are questions revolving around the TransformationDAG.
For an in-depth look, see Data Transformation Framework.

I get HDF5 or NetCDF4 errors when using the cache. How can I resolve this?

When writing xarray data to the cache, you might encounter the following error message:

RuntimeError: Failed saving transformation cache file for result of type
dantro.containers.xr.XrDataContainer using storage function ...

This error should trace back to the to_netcdf4 method of xarray Dataset or xarray DataArray objects.
That method inspects whether the netcdf4 package is available, and if so: uses it to write the cache file.
If it is not available, it uses the scipy interface to achieve the same.

As far as we know (as of February 2020), the error seems to occur when both the h5py package (needed by dantro) and the netcdf4 package (not required by dantro, but maybe by some other package you are using) are installed in your currently used Python environment.
To check this, you can call pip freeze and inspect the list of installed packages.
One further indication for this being the reason is when you find HDF5-related errors in the traceback, e.g. RuntimeError: NetCDF: HDF error.

There are two known solutions to this issue:

	Uninstall netcdf4 from the Python environment.
This is of course only possible if no other package depends on it.

	Explicitly specify the netcdf4 engine, such that the scipy package performs the write operation, not the netcdf4 package.
To achieve this, pass the engine argument to the write function by extending the arguments passed to the corresponding Transformation:

file_cache:
 storage_options:
 engine: scipy

More information:

	Full syntax specification

	Passing storage options as defaults. Note that the defaults may cause issues if cache files for non-xarray objects need to be created.

	xarray documentation [http://xarray.pydata.org/en/stable/generated/xarray.Dataset.to_netcdf.html] of the to_netcdf4 method.

Groups

	The GraphGroup

	The ParamSpaceGroup

The GraphGroup

The GraphGroup is specialized on managing and handling graph-related data.
The group defines a graph via data groups and data containers that store nodes, edges, and optionally their properties.

	Creating a GraphGroup

	Creating Graphs from a GraphGroup

	Setting Graph Properties

	Loading External Data as Graph Property

Creating a GraphGroup

The GraphGroup holds the following, customizable variables that describe in which containers or attributes to find the info on the nodes and edges:

	_GG_node_container = "nodes": The name of the container or group (node_container) containing the node data

	_GG_edge_container = "edges": The name of the container or group (edge_container) containing the edge data

	_GG_attr_directed = "directed": The GraphGroup attribute (boolean) describing whether the graph is directed or not

	_GG_attr_parallel = "parallel": The GraphGroup attribute (boolean) describing whether the graph allows for parallel edges or not

	_GG_attr_edge_container_is_transposed = "edge_container_is_transposed": The GraphGroup attribute (boolean) describing whether the edge container is transposed, i.e., has the shape (edge-tuple-size, edge-number)

	_GG_attr_keep_dim = "keep_dim": The GraphGroup attribute (iterable) describing which dimensions are not to be squeezed during data selection.

If you do not change anything, the default values are taken.

The GraphGroup only holds and manages graph data but itself is not a graph, in the sense that no functionality such as finding the neighborhood of a node is implemented there.
Instead, the GraphGroup uses the networkx [https://networkx.github.io] library and its interface for creating Graph objects.
In the following, an overview is given how graphs can be created from a GraphGroup.

Creating Graphs from a GraphGroup

The GraphGroup contains the create_graph() method that creates a graph from the containers and groups that are part of the GraphGroup together with information provided by the GraphGroup attributes.
However, the function also allows you to explicitly set graph properties such as whether the graph should be directed or allow for parallel edges.
The function returns a networkx graph object [https://networkx.github.io/documentation/stable/reference/classes/index.html] corresponding to the provided data and information.

The create_graph() function further allows you to optionally set node and edge properties by specifying node_props or edge_props lists.

Any data can be pre-selected using the sel and isel arguments.
The selectors are applied to all data involved, i.e., to node, edge, as well as property data.
It is also possible to provide both sel and isel as long as the intersection of both key-sets is empty.

Warning

Invalid keys in sel and isel are ignored silently. This means that the node, edge, and property data need not have the same set of dimensions in order to apply a selection.
Moreover, all dimensions of size 1 are squeezed, hence no selection has to be specified in such scenarios, i.e. when the selection is unambiguous.

If you have node/edge data that changes over time, you can select along the time dimension directly via the at_times or the at_time_idx argument.
This sets or overwrites the respective entry in the sel or isel dicts.

The following example demonstrates the graph creation: Let us assume that we have a graph with static nodes and dynamic edges, each with dynamic properties.
The dynamic data, stored as TimeSeriesGroup, is given for two points in time.
The resulting data tree looks as follows:

graph_group <GraphGroup, 4 members, 2 attributes>
└┬ nodes <XrDataContainer, ..., shape (10,), 0 attributes>
├ some_node_prop <XrDataContainer, ..., shape (2,10), 0 attributes>
├ edges <TimeSeriesGroup, 2 members, 0 attributes>
└┬ 0 <XrDataContainer, ..., shape (9,2), 0 attributes>
└ 10 <XrDataContainer, ..., shape (6,2), 0 attributes>
├ some_edge_prop <TimeSeriesGroup, 2 members, 0 attributes>
└┬ 0 <XrDataContainer, ..., shape (9,), 0 attributes>
└ 10 <XrDataContainer, ..., shape (6,), 0 attributes>
└ other_edge_prop <XrDataContainer, ..., shape (6,), 0 attributes>

Let’s now create a graph from the GraphGroup:

Create the initial graph from the graph group without node/edge properties
g = graph_group.create_graph(at_time=0) # time specified by value

Now, create the final graph with `some_node_prop` as node property and
`some_edge_prop` as edge property.
g = graph_group.create_graph(at_time_idx=-1, # time specified via index
 node_props=["some_node_prop"],
 edge_props=["some_edge_prop"])

Hint

Graph creation might fail for graphs with a single node (edge) due to the node (edge) dimension (of size 1) being squeezed out. It is therefore strongly recommended to specify the node and edge dimension names in the _GG_attr_keep_dim group attribute. Alternatively, they can be specified via the keep_dim argument in create_graph(), set_node_property(), and set_edge_property().

Setting Graph Properties

If you already have a networkx graph object, you can set node or edge properties using the set_node_property() or set_edge_property() function.
Properties can be added from:

	data stored inside the GraphGroup: Here, the name argument specifies the name of the data container or group which stores the property.

	external data: see Loading External Data as Graph Property

In both cases, name will be the name of the node or edge property in the networkx graph.

Again, the data can be pre-selected using the sel, isel, at_time, and at_time_idx arguments.

In the example below, the other_edge_prop data stored inside the graph group is added as edge property.
Note that time specification is required here, even though other_edge_prop is one-dimensional, because edge_container contains edge data for multiple times.

Set the edge property manually from the `other_edge_prop` data container
and select the data of the last time step
graph_group.set_edge_property(g=g, name="other_edge_prop", at_time_idx=-1)

Node properties can be added analogously.

Note

Node (edge) properties can only be added for those nodes (edges) that are available in the node_container (edge_container).
By default, property data is assumed to be aligned with the GraphGroups node (edge) data.
However, it can be aligned with the latter via xarray.align [http://xarray.pydata.org/en/stable/generated/xarray.align.html] by setting align to True in set_node_property() (set_edge_property()).
The indexes of the node_container (edge_container) are used for the alignment in each dimension.
If the class variable _GG_WARN_UPON_BAD_ALIGN is set to True (default: True), warnings on possible pitfalls are given.

Loading External Data as Graph Property

If you want to add a graph property from data that is not stored inside the GraphGroup (e.g., you have pre-processed some data), this can be realized in two different ways:

	
	Making use of the property_maps.
	After registering external data with a key using register_property_map(), it will be permanently available via the provided key, i.e., the key can be passed as name in the set_*_property functions.

	
	Loading the external data directly by passing it via the data argument in the respective set_*_property function.
	The name argument then sets the name of the property.

Have a look at a small example where some external data ext_data is added to the graph as a node property:

Make the external data available in the graph group under the given key
graph_group.register_property_map("my_ext_node_prop", data=ext_data)

Use the newly created key to set the external data as node property
graph_group.set_node_property(g=g, name="my_ext_node_prop")

Alternatively, load the external data directly via the `data` argument
graph_group.set_node_property(g=g, name="my_ext_node_prop", data=ext_data)

The ParamSpaceGroup

The ParamSpaceGroup is a group where each member is assumed to be a point in a multi-dimensional parameter space.

For the representation of the parameter space, the paramspace package (see here [https://pypi.org/project/paramspace/]) is used.
Subsequently, a ParamSpaceGroup is associated with a paramspace.ParamSpace object, which maps the members of the group to states in the parameter space.

Each member of the group (i.e.: each state of the parameter space) is represented by a ParamSpaceStateGroup, which ensures that the name of the group is a valid state name.

	Usage Example

	Universes and Multiverses

Usage Example

This usage example shows how a ParamSpaceGroup is populated and used.

First, let’s define a parameter space, in this case a two-dimensional one that goes over the parameters beta and seed.
(For more information on usage of the paramspace package, consult its documentation [https://paramspace.readthedocs.io/]).

Define a 2D parameter space (typically done from a YAML file)
In [1]: from paramspace import ParamSpace, ParamDim

In [2]: all_params = {
 ...: "some_parameter": "foo",
 ...: "more_parameters": {
 ...: "spam": "fish",
 ...: "beta": ParamDim(default=1., values=[.01, .03, .1, .3, 1.]),
 ...: },
 ...: "seed": ParamDim(default=42, range=[20])
 ...: }
 ...:

In [3]: pspace = ParamSpace(all_params)

What does this look like?
In [4]: print(pspace.get_info_str())
ParamSpace Information
======================

 Dimensions: 2
 Coupled: 0
 Shape: (5, 20)
 Volume: 100

Parameter Dimensions

 (Dimensions further up in the list are iterated over less frequently)

 - beta
 (0.01, 0.03, 0.1, 0.3, 1.0)
 order: 0

 - seed
 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
 order: 0

Now, let’s set up a ParamSpaceGroup and populate it (with some random data in this case):

In [5]: import numpy as np

In [6]: import xarray as xr

In [7]: from dantro.groups import ParamSpaceGroup

In [8]: from dantro.containers import XrDataContainer

In [9]: pspgrp = ParamSpaceGroup(name="my_parameter_sweep", pspace=pspace)

Iterate over the parameter space, create a ParamSpaceState group (using
the state number as name), and populate it with some random data
In [10]: for params, state_no_str in pspace.iterator(with_info='state_no_str'):
 : pss = pspgrp.new_group(state_no_str)
 : some_data = xr.DataArray(data=np.random.random((2,3,4)),
 : dims=('foo', 'bar', 'baz'),
 : coords=dict(foo=[0, 1],
 : bar=[0, 10, 20],
 : baz=[.1, .2, .4, .8]))
 : pss.add(XrDataContainer(name="some_data", data=some_data))
 :

The pspgrp is now populated and ready to use.

Hint

For instructions on how to load data from files into a ParamSpaceGroup, see the examples in the integration guide.

Let’s explore its properties a bit, also comparing it to the shape of the parameter space it is associated with:

In [11]: print(pspgrp.tree_condensed)

Tree of ParamSpaceGroup 'my_parameter_sweep', 100 members, 1 attribute
 └┬ 022 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 023 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 024 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 025 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 026 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ (91 more) ...
 ├ 122 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 123 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 ├ 124 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…
 └ 125 <ParamSpaceStateGroup, 1 member, 0 attributes>
 └─ some_data <XrDataContainer, float64, (foo: 2, bar: 3, baz…

In [12]: pspgrp.pspace.num_dims
Out[12]: 2

The volume is the product of the dimension sizes, here: 5 * 20 = 100
In [13]: pspgrp.pspace.volume
Out[13]: 100

In [14]: len(pspgrp) == pspgrp.pspace.volume
Out[14]: True

On top of the capabilities of a regular group-like iteration, the individual members (i.e., ParamSpaceStateGroup objects) can query their coordinates within the parameter space via their coords property.

In [15]: from dantro.groups import ParamSpaceStateGroup

In [16]: for pss in pspgrp.values():
 : assert isinstance(pss, ParamSpaceStateGroup)
 : assert 'beta' in pss.coords
 : assert 'seed' in pss.coords
 :

Furthermore, it also supplies the select() method, with which data from the ensemble of parameter states can be combined into a higher-dimensional object.
The resulting object then has the parameter space dimensions plus the data dimensions:

In [17]: all_data = pspgrp.select(field="some_data")

In [18]: print(all_data)
<xarray.Dataset>
Dimensions: (beta: 5, seed: 20, foo: 2, bar: 3, baz: 4)
Coordinates:
 * beta (beta) float64 0.01 0.03 0.1 0.3 1.0
 * seed (seed) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * foo (foo) int64 0 1
 * bar (bar) int64 0 10 20
 * baz (baz) float64 0.1 0.2 0.4 0.8
Data variables:
 some_data (beta, seed, foo, bar, baz) float64 0.8616 0.8572 ... 0.6707

... should now have 5 dimensions: 3 data dimensions + 2 pspace dimensions
In [19]: all_data["some_data"].ndim
Out[19]: 5

In [20]: set(all_data["some_data"].coords.keys())
Out[20]: {'bar', 'baz', 'beta', 'foo', 'seed'}

Importantly, having data available in this structure allows to conveniently create plots for each point in parameter space using the plot creators specialized for this purpose.

Universes and Multiverses

At this point, we would like to introduce some dantro-specific nomenclature and the motivation behind it.

dantro is meant to be used as a data processing pipeline, e.g. for simulation data (see the Integration Example).
In such a scenario, one often feeds a set of model parameters to a computer simulation, which then generates some output data (the input to the processing pipeline).
Usually, individual simulations are independent of each other and their behaviour is fully defined by the parameters it is instantiated with.

This led to the following metaphors:

	A Universe refers to a self-sufficient computer simulation which requires only a set of input parameters.

	A Multiverse is a set of many such universes, which are completely independent of each other.

To push it a bit more: The universes may all be goverened by the same physical laws (i.e., have the same underlying computer model) but the values of physical constants are different (i.e., have different simulation parameters).

For dantro, these terms typically refer to the output of such computer simulations:

	Universe data is the output of a single simulation, loaded into a ParamSpaceStateGroup

	Multiverse data is the output from multiple individual universes.
As these are typically generated for points of the same parameters space, they can also be gathered into a ParamSpaceGroup.

Subsequently, when handling data that is structured this way, parts of dantro (most notably the MultiversePlotCreator and UniversePlotCreator) also use these metaphors instead of the parameter space terminology.

Note

At the end of the day, these are still metaphors.
However, in the context of simulation-based research, we hope that they simplify the vocabulary with which researchers talk about computer models and their output.

These thoughts also inspired parts of the frontend of the Utopia project [https://gitlab.com/utopia-project/utopia], where a Multiverse object coordinates the simulation of individual universes using the dantro and paramspace objects showcased above.

The PlotManager

The PlotManager orchestrates the whole plotting framework.
This document describes what it is and how it works together with the Plot Creators to generate plots.

	Overview

	Nomenclature

	The Plot Configuration

	Parameter sweeps in plot configurations

	Plot Configuration Inheritance

	Multiple inheritance

	Lookup rules

	Shortcuts

	dantro base plot configuration pool

	Naming conventions

	The Plot Function

	Plot Function Specification

	Importing a plotting function from a module

	Importing a plotting function from a file

	Implementing Plot Functions

	The is_plot_func decorator

	Recommended plot function signature

	Plot function without data transformation framework

	Plot function the bare basics

	Features

	Skipping Plots

	What happens when a plot is skipped?

Further reading:

	Plot Creators

	Plot Data Selection

	Plot Configuration Reference

	Plotting FAQs

Overview

The PlotManager manages the creation of plots.
So far, so obvious.

The idea of the PlotManager is that it is aware of all available data and then gets instructed to create a set of plots from this data.
The :py:class`.PlotManager` does not carry out any plots.
Its purpose is to handle the configuration of some plot creator classes; those implement the actual plotting functionality.
This way, the plots can be configured consistently, profiting from the shared interface and the already implemented functions, while keeping the flexibility of having multiple ways to create plots.

To create a plots, a so-called plot configuration gets passed to the PlotManager.
From the plot configuration, the manager determines which so-called plot function is desired and which plot creator is to be used.
After retrieving the plot function and instantiating the creator instance, the remaining plot configuration is passed to the plot creator, which is then responsible to create the actual plot output.

The main methods to interact with the PlotManager are the following:

	PlotManager.plot() expects the configuration for a single plot.

	PlotManager.plot_from_cfg() expects a set of plot configurations and, for each configuration, creates the specified plots using PlotManager.plot().

This configuration-based approach makes the PlotManager quite versatile and provides a set of features that the individual plot creators need not be aware of.

Nomenclature

To repeat, this is the basic vocabulary to understand the plotting framework and its structure:

	The plot configuration contains all the parameters required to make one or multiple plots.

	The plot creators create the actual plots. Given some plot configuration, they produce the plots as output.

	The plot function (or plotting function) is a callable that receives the plot data and generates the output; it is retrieved by the plot manager but invoked by the creator.

	The PlotManager orchestrates the plotting procedure by feeding the relevant plot configuration to a specific plot creator.

This page focusses on the capabilities of the PlotManager itself.
For creator-specific capabilities, follow the corresponding links.

The Plot Configuration

A set of plot configurations may look like this:

values_over_time: # this will also be the final name of the plot (without extension)
 # Select the creator to use
 creator: pyplot
 # NOTE: This has to be known to PlotManager under this name.
 # It can also be set as default during PlotManager initialization.

 # Specify the module to find the plot_function in
 module: .basic # Uses the dantro-internal plot functions

 # Specify the name of the plot function to load from that module
 plot_func: lineplot

 # The data manager is passed to that function as first positional argument.
 # Also, the generated output path is passed as ``out_path`` keyword argument.

 # All further kwargs on this level are passed on to that function.
 # Specify how to get to the data in the data manager
 x: vectors/times
 y: vectors/values

 # Specify styling
 fmt: go-
 # ...

my_fancy_plot:
 # Select the creator to use
 creator: pyplot

 # This time, get the module from a file
 module_file: /path/to/my/fancy/plotting/script.py
 # NOTE Can also be a relative path if ``base_module_file_dir`` was set

 # Get the plot function from that module
 plot_func: my_plot_func

 # All further kwargs on this level are passed on to that function.
 # ...

This will create two plots: values_over_time and my_fancy_plot.
Both are using PyPlotCreator (known to PlotManager by its name, pyplot) and are loading certain functions to use for plotting.

Hint

Plot configuration entries starting with an underscore or dot are ignored:

_foobar: # This entry is ignored
 some_defaults: &defaults
 foo: bar

.barbaz: # This entry is also ignored
 more_defaults: &more_defaults
 spam: fish

my_plot: # -> creates my_plot
 <<: [*defaults, *more_defaults]
 # ...

my/other/plot: # -> creates my/other/plot
 # ...

This can be useful when desiring to define YAML anchors that are used in the actual plot configuration entries, e.g. for specifying defaults.

Parameter sweeps in plot configurations

With the configuration-based approach, it becomes possible to use parameter sweeps in the plot specification; the manager detects that it will need to create multiple plots and does so by repeatedly invoking the instantiated plot creator using the respective arguments for the respective point in the parameter space.

multiple_plots: !pspace
 creator: pyplot
 module: .basic
 plot_func: lineplot

 # All further kwargs on this level are passed on to that function.
 x: vectors/times

 # Create multiple plots with different y-values
 y: !pdim
 default: vectors/values
 values:
 - vectors/values
 - vectors/more_values

This will create two files, one with values over times, one with more_values over times.
By defining further !pdims, the combination of those parameters are each leading to a plot.

Plot Configuration Inheritance

New plot configurations can be based on existing ones.
This makes it very easy to define various plot functions without copy-pasting the plot configurations.
Instead, a plot configuration can be successively assembled from separate parts.

To use this feature, add the based_on key to your plot configuration and specify the name or names of other plot configurations you want to let this plot be based on.
We call those plot configurations base configurations to distinguish them from the configuration the based_on key is used in.

These base configurations are then looked up in previously specified plot configurations, so-called base plot configuration pools.
They are passed to PlotManager during initialization using the base_cfg_pools argument.

For example, let’s say we have a base configuration pool that specifies a lineplot with a certain style:

Base configuration pool, registered with PlotManager

my_gg_lineplot:
 creator: pyplot
 module: basic
 plot_func: lineplot

 style:
 base_style: ggplot

To avoid repetition in the actual definition of a plot, the based_on key can then be used:

Plot configuration, e.g. as passed to PlotManager.plot()

values_over_time:
 based_on: my_gg_lineplot

 x: vectors/times
 y: vectors/values

When based_on: my_gg_lineplot is given, first the configuration for my_gg_lineplot is loaded.
It is then recursively updated with the other keys, here x and y, resulting in:

Plot configuration with ``based_on`` entries fully resolved

values_over_time:
 creator: pyplot
 module: basic
 plot_func: lineplot

 style:
 base_style: ggplot

 x: vectors/times
 y: vectors/values

Note

Reminder: Recursively updating means that all levels of the configuration hierarchy can be updated.
This happens by traversing along with all mapping-like parts of the configuration and updating their keys.

Multiple inheritance

When providing a sequence, e.g. based_on: [foo, bar, baz], the first configuration is used as the base and is subsequently recursively updated with those that follow, finally applying the updates from the plot configuration where based_on was defined in.
If there are conflicting keys, those from a later update take precedence over those from a previous base configuration.

This can be used to subsequently build a configuration from several parts.
With the example above, we could also do the following:

Base plot configuration, specifying importable configuration chunks
.plot.line:
 creator: pyplot
 module: basic
 plot_func: lineplot

.style.default:
 style:
 base_style: ggplot

Actual plot configuration

values_over_time:
 based_on: [.style.default, .plot.line]

 x: vectors/times
 y: vectors/values

This multiple inheritance approach has the following advantages:

	Allows defining defaults in a central place, using it later on

	Allows modularization of different aspects of the plot configuration

	Reduces repetition, e.g. of style configurations

	Retains full flexibility, as all parameters can be overwritten in the plot configuration

Hint

The names used in the examples for the plot configurations can be chosen arbitrarily (as long as they are valid plot names).

However, we propose to use a consistent naming scheme that describes the purpose of the respective entries and broadly categorizes them.
In the example above, the .plot and .style prefixes denote the effect of the configuration.
This not only makes the plot definition more readable, but also helps to avoid conflicts with duplicate base configuration names — something that becomes more relevant with rising size of configuration pools.

Lookup rules

In the examples above, only a single base configuration pool was defined.
However, lookups of base configurations are not restricted to a single pool.
This section provides more details on how it is determined which base configurations is used to assemble a plot configuration.

First of all: what would multiple pools be good for?
The answer is simple: it allows to include plot configurations into the pool that are spread out over multiple files, e.g. because they are part of different projects or in cases one has no control over them.
Instead of copying the content into one place, it is safest to make them available as they are.

Let’s assume we have the following two base configuration pools registered, with --- seperating the different pools.

Style configuration
.style.default:
 style:
 base_style: ggplot

.style.poster:
 based_on: .style.default
 style:
 base_style: seaborn-poster
 lines.linewidth: 3
 lines.markersize: 10

Plot function definitions
.plot.defaults:
 based_on: .style.default
 creator: pyplot
 module: generic

.plot.errorbars:
 based_on: .plot.defaults
 plot_func: errorbars

.plot.facet_grid:
 based_on: .plot.defaults
 plot_func: facet_grid

Let’s give this a closer look: Already within the pool, it is possible to use based_on:

	In .style.poster, the .style.default from the same pool is used.

	In .plot.defaults, the .style.default is specified as well.

	The other .plot… entries base themselves on .plot.defaults.

In the last case, looking up .plot.defaults will lead to its own based_on entry needing to be evaluated — and this is exactly what happens:
the resolver recursively inspects the looked up configurations and, if there are any based_on entries there, looks them up as well.

Note

Lookups are only possible within the same or a previous pool.

In the example above, the .plot… entries may look up the .style… entries but not the other way around.
For more details on the lookup rules, see resolve_based_on().

Hint

Wait, does this not allow to create loops?!

Yes, it might! However, the resolver will keep track of the base configurations it already visited and can thus detect when a dependency loop is created.
In such a case, it will inform you about it and avoid running into an infinite recursion.

Ok, how would we assemble such a plot configuration now?
That’s easiest to see with an example:

Actual plot configuration

my_default_plot:
 based_on: .plot.facet_grid

 select: # ... select some data for plotting ...

 transform: # ... and transform it ...

 # Visualize as heatmap
 kind: pcolormesh
 x: time
 y: temperature

my_poster_plot:
 based_on:
 - my_default_plot
 - .style.advanced

 # Use a lineplot instead of the heatmap
 kind: line
 y: ~
 hue: temperature

To conclude, this feature allows to assemble plot configurations from different files or configuration hierarchies, always allowing to update recursively (unlike YAML inheritance).
This reduces the need for copying configurations into multiple places.

Shortcuts

Say you have defined many or all of your plots in the base pools and are using a particular plots config file only for enabling a set of plots, then that file will have many entries like the following:

my_plot:
 based_on: my_plot

To reduce redundancies, there is a shortcut syntax that achieves the same:

my_plot: inherit

This will internally be translated to the long form.
There is also the option to use booleans, which additionally controls whether the plot will be enabled by default:

this ...
my_plot: false

translates to:
my_plot:
 based_on: my_plot
 enabled: false

dantro base plot configuration pool

The dantro plotting framework also includes its own set of base plot configuration pools.
These provide a bridge to the functionality that is implemented in dantro itself, making it more robust for projects downstream that use the plotting framework.

The base plot config pool contains a wide variety of entries.
For instance, entries like .plot.<name> refer to a plot function definition, while entries like .creator.<name> only set a certain plot creator and its defaults.

You may notice that many entries contain not much more than a few configuration keys.
This is intentional: By keeping base configs short, they can be more easily combined using multiple inheritance.

The full dantro base plot configuration can be found on its dedicated page.

Hint

To not use the dantro base plot config pool, set the use_dantro_base_cfg_pool initialization argument for the PlotManager() accordingly.

Naming conventions

As you may have noticed from looking at dantro base plot configuration pool, there are some naming conventions underlying the names of those base config pool entries.
Let’s make the main ideas explicit here:

	Base configs that are meant to be aggregated and that cannot be used for plotting on their own should start with a leading dot (.).
Base configs that are ready for plotting should not have that leading dot.

	Depending on the intended effect, base configs are grouped into certain namespaces, (.<namespace>):

	.plot.<name> defines a certain plot function and its defaults; these may be implemented in dantro or elsewhere.

	.creator.<name> defines a plot creator and its defaults.

	.dag contains arguments related to the data transformation framework.

	.style sets certain overall aesthetic elements of a plot.

	.hlpr calls individual plot helper functions.

	.animation sets animation-related arguments.

	.defaults contain entries that are included by default, e.g. via the .creator configs.

	… and potential other namespaces.

	These namespaces can be further nested, for instance:

	.plot.facet_grid.scatter defines a facet-grid scatter plot as a specialization of the generic .plot.facet_grid which does not specify the kind.

	.creator.universe.any sets the creator and additionally its :ref:`universes argument <pcr_uni>`.

	.hlpr.limits.x.from_zero sets x-axis limits to [0, ~].

	.animation.disable … does what the name says.

	Ideally, the effect of base configs should not overlap too much, as this makes the result depend on the order of inheritance as specified in based_on, which may be confusing.

	This is most important within a namespace, because it makes no sense to include multiple .plot entries into based_on.

	One reasonable exception can be the definition of modifier base configs.
For example, .plot.facet_grid.with_auto_encoding will inherit from .plot.facet_grid and additionally set some entries.

Note

While we would encourage you to follow these conventions, you are of course totally free to name your base plot configs any way you like; there are no enforcements.

The Plot Function

The plot function is the place where selected data and configuration arguments come together to generate the plot output.
The PlotManager takes care of retrieving the plotting function, and a plot creator takes care of invoking it.
While these aspects are taken care of, the function itself still has to be implemented (and communicated) to the plotting framework.

In short, a plot function can be something like this:

from dantro.plot import is_plot_func

@is_plot_func(use_dag=True, required_dag_tags=("x", "y"))
def my_plot(*, data: dict, out_path: str, **plot_kwargs):
 """A plot function using the data transformation framework.

 Args:
 data: The selected and transformed data, containing specified tags.
 out_path: Where to save the plot output.
 **plot_kwargs: Further plotting arguments
 """
 x = data["x"]
 y = data["y"]

 # Do something with the data
 # ...

 # Save the plot at `out_path`
 # ...

For examples of how to then specify that function via the plot configuration and details on how to implement it, see the respective sections.

Plot Function Specification

Let’s assume we have a plotting function defined somewhere and want to communicate to the PlotManager that this function is responsible for creating the plot output.

For the moment, the exact definition of the function is irrelevant.
You can read more about it below.

Importing a plotting function from a module

To do this, the module and plot_func entries are required.
The following example shows a plot that uses a plot function from a package called utopya.eval.plots and another plot that uses some (importable) package from which the module and the plot function are imported:

my_plot:
 # Import some module from utopya.plot_funcs (note the leading dot)
 module: .distribution

 # Use the function with the following name from that module
 plot_func: my_plot_func

 # ... all other arguments

my_other_plot:
 # Import a module from any installed package
 module: my_installed_plotting_package.some_module
 plot_func: my_plot_func

 # ... all other arguments

Importing a plotting function from a file

There might be situations where you want or need to implement a plot function decoupled from all the existing code and without bothering about importability (which may require setting up a package, installation routine, etc).

This can be achieved by specifying the module_file key instead of the module key in the plot configuration.
That python module is then loaded from file and the plot_func key is used to retrieve the plotting function:

my_plot:
 # Load the following file as a python module
 module_file: ~/path/to/my/python/script.py

 # Use the function with the following name from that module
 plot_func: my_plot_func

 # ... all other arguments (as usual)

Note

For those interested, the specification is interpreted by the PlotFuncResolver class, which then takes care of resolving the correct plot function.
This class can also be specialized; the PlotManager simply uses the class defined in its PLOT_FUNC_RESOLVER class variable.

Implementing Plot Functions

Below, you will learn how to implement a plot function.

A plot function is basically any Python function that adheres to a compatible signature.

Note

Depending on the chosen creator, the signature may vary.
For instance, the PyPlotCreator adds a number of additional features such that the plot function may need to accept additional arguments (like hlpr); see here for more information.

The is_plot_func decorator

When defining a plot function, we recommend using this decorator.
It takes care of providing essential information to the PlotManager and makes it easy to configure those parameters relevant for the plot function.

As an example, to specify which creator can be used for the plot function, the creator argument can be set right there aside the plot function definition.
To control the whether the plot creator should use the data transformation framework, the use_dag flag can be set and the required_dag_tags argument can specify which data tags the plot function expects.

For the above reasons, the best way to implement a plot function is by using the is_plot_func decorator.

The decorator also provides the following arguments that affect DAG usage:

	use_dag: to enable or disable DAG usage. Disabled by default.

	required_dag_tags: can be used to specify which tags are expected by the plot function; if these are not defined or not computed, an error will be raised.

	compute_only_required_dag_tags: if the plot function defines required tags and compute_only is None, the compute_only argument will be set such that only required_dag_tags are computed.

	pass_dag_object_along: passes the TransformationDAG object to the plot function as dag keyword argument.

	unpack_dag_results: instead of passing the results as the data keyword argument, it unpacks the results dictionary, such that the tags can be specified directly in the plot function signature.
Note that this puts some restrictions on tag names, prohibiting some characters as well as requiring that plot configuration parameters do not collide with the DAG results.
This feature is best used in combination with required_dag_tags and compute_only_required_dag_tags enabled (which is the default).

Decorator usage puts all the relevant arguments for using the DAG framework into one place: the definition of the plot function.

Recommended plot function signature

The recommended way of implementing a plot function sets the plot function up for use of the data transformation framework of the BasePlotCreator (and derived classes).
In such a case, the data selection is taken care of by the creator and then simply passed to the plot function, allowing to control data selection right from the plot configuration.

Let’s say that we want to implement a plot function that requires some x and y data selected from the data tree.
In the definition of the plot function we can use the decorator to specify that these tags are required; the framework will then make sure that these results are computed.

An implementation then looks like this:

from dantro.plot import is_plot_func

@is_plot_func(use_dag=True, required_dag_tags=("x", "y"))
def my_plot(*, data: dict, out_path: str, **plot_kwargs):
 """A plot function using the data transformation framework.

 Args:
 data: The selected and transformed data, containing specified tags.
 out_path: Where to save the plot output.
 **plot_kwargs: Further plotting arguments
 """
 x = data["x"]
 y = data["y"]

 # Do something with the data
 # ...

 # Save the plot at `out_path`
 # ...

The corresponding plot configuration could look like this:

my_plot:
 creator: base

 # Select the plot function
 # ...

 # Select data
 select:
 x: data/MyModel/some/path/foo
 y:
 path: data/MyModel/some/path/bar
 transform:
 - .mean
 - increment

 # ... further arguments

For more detail on the data selection syntax, see Plot Data Selection.

Note

Derived plot creators may require a slightly different signature, possibly containing additional arguments depending on the enabled feature set.
While this signature is mostly universal across creators, make sure to refer to your desired creator for details.

For instance, the the PyPlotCreator would require the plot function to accept an additional argument hlpr.

Plot function without data transformation framework

To not use the data transformation framework, simply omit the use_dag flag or set it to False in the decorator or the plot configuration.
When not using the transformation framework, the creator_type should be specified, thus making the plot function bound to one type of creator.

from dantro import DataManager
from dantro.plot import is_plot_func, BasePlotCreator

@is_plot_func(creator_type=BasePlotCreator)
def my_plot(*, out_path: str, dm: DataManager, **additional_plot_kwargs):
 """A simple plot function.

 Args:
 out_path (str): The path to store the plot output at.
 dm (dantro.data_mngr.DataManager): The loaded data tree.
 **additional_kwargs: Anything else from the plot config.
 """
 # Select some data ...
 data = dm["foo/bar"]

 # Create the plot
 # ...

 # Save the plot
 # ...

Note

The dm argument is only provided when not using the DAG framework.

Plot function the bare basics

There is an even more basic way of defining a plot function, leaving out the is_plot_func() decorator altogether:

from dantro import DataManager

def my_bare_basics_plot(
 dm: DataManager, *, out_path: str, **additional_kwargs
):
 """Bare-basics signature required by the BasePlotCreator.

 Args:
 dm: The DataManager object that contains all loaded data.
 out_path: The generated path at which this plot should be saved
 **additional_kwargs: Anything else from the plot config.
 """
 # Select the data
 data = dm["some/data/to/plot"]

 # Generate the plot
 # ...

 # Store the plot
 # ...

Note

When using the bare basics version, you need to set the creator argument in the plot configuration in order for the PlotManager to find the desired creator.

Warning

This way of specifying plot functions is mainly retained for reasons of backwards-compatibility.
If you can, avoid this form of plot function definition and use the recommended signature instead.

Features

Skipping Plots

To skip a plot, raise a dantro.exceptions.SkipPlot exception anywhere in your plot function or the plot creator.

Hint

When using the data transformation framework for plot data selection, you can invoke the raise_SkipPlot data operation to conditionally skip a plot with whatever logic you desire.
See raise_SkipPlot() for more information.

The easiest implementation is via the fallback of a failing operation, see Error Handling:

my_plot:
 # ...
 dag_options:
 # Define a tag which includes a call to the raise_SkipPlot operation
 # (Use a private tag, such that it is not automatically evaluated)
 define:
 _skip_plot:
 - raise_SkipPlot

 transform:
 # ...
 # If the following operation fails, want to skip the current plot
 - some_operation: [foo, bar]
 allow_failure: silent
 fallback: !dag_tag _skip_plot

Additionally, plot creators can supply built-in plot configuration arguments that allow to skip a plot under certain conditions.
Currently, this is only done by the MultiversePlotCreator, see Skipping multiverse plots.

Note

For developers:
The BasePlotCreator provides the _check_skipping() method, which can be overwritten by plot creators to implement this behaviour.

What happens when a plot is skipped?

Plotting stops immediately and returns control to the plot manager, which then informs the user about this via a log message.
For parameter sweep plot configurations, skipping is evaluated individually for each point in the plot configuration parameter space.

A few remarks regarding side effects (e.g., directories being created for plots that are later on decided to be skipped):

	Skipping will have fewer side effects if it is triggered as early as possible.

	If skipping is triggered by a built-in plot creator method, it is taken care that this happens before directory creation.

	If dantro.exceptions.SkipPlot is raised at a later point, this might lead to intermediate directories having been created.

Note

The plot configuration will not be saved for skipped plots.

There is one exception though: if a parameter sweep plot configuration is being used and at least one of the plots of that sweep is not skipped, the corresponding plot configuration metadata will be stored alongside the plot output.

Plot Creators

Within the plotting framework, the plot creators are the classes that perform all the actual plotting work.
This document describes what they are and how they can be used.

For further reading on the individual plot creators, see:

	The BasePlotCreator
	Using the data transformation framework for plot data selection

	Specializing BasePlotCreator

	The PyPlotCreator
	The PlotHelper

	Adjusting a Plot’s Style

	Implementing Plot Functions

	Animations

	Specializing PyPlotCreator

	Plots from Multidimensional Data
	UniversePlotCreator: Plots from Universe Data

	MultiversePlotCreator: Plots from Multiverse Data

Hint

For guidance about specializing plot creators, see here.

A Family of Plot Creators

AbstractPlotCreator - The plot creator interface

As defined in dantro.abc, the AbstractPlotCreator defines the interface for plot creators, i.e.: all the methods the PlotManager expects and requires to create a plot.

By implementing the abstract methods, the behavior of the plot creators can be specified.

Part of the interface is that a plot creator will be initialized with the knowledge about a DataManager, that holds the data that should be used for plotting.

base.BasePlotCreator - Implementing shared behaviour

The base.BasePlotCreator implements the basic functionality that all derived plot creators profit from:
Parsing the plot configuration, selecting and transforming data, and retrieving and invoking a so-called plot function (where the actual visualization is implemented).

Continue reading about this here.

Hint

If you want to have full control of how your plot is generated, this is the creator to use:
You can configure it to simply invoke an arbitrary plot function and pass it the available data – and you take care of all the rest within that function.

In case you want dantro to automate more parts of the plotting routine, continue reading about more advanced creators below.

PyPlotCreator - Creating matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot]-based plots

The PyPlotCreator specializes on creating plots using matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot].
By making these assumptions about the used plotting backend, it allows to generalize plot setup, options, and style.
Furthermore, it allows to easily define animation update functions.

For more information, have a look at the dedicated documentation page.

UniversePlotCreator & psp.MultiversePlotCreator

Implemented in dantro.plot.creators.psp are plot creators that work tightly with data stored in a ParamSpaceGroup, i.e.: data that was created from a ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] parameter sweep.
These are derived from PyPlotCreator and inherit all its abilities.

There are two different plot creators to work with this kind of data.
The UniversePlotCreator allows selecting a certain subspace of the parameter space and creating a plot for each of these so-called “universes”.

The MultiversePlotCreator on the other hand uses the capabilities of the ParamSpaceGroup and the data transformation framework to select and combine data from many universes, thus working on the “multiverse”.

See Plots from Multidimensional Data for more information.

The BasePlotCreator

The base.BasePlotCreator implements the basic functionality that all derived plot creators profit from:

	Resolving a plot function, which can be a directly given callable, an importable module and name, or a path to a Python file that is to be imported.

	Parsing plot configuration arguments.

	Optionally, performing data selection from the associated DataManager using the data transformation framework.

	Invoking the plot function with the selected and transformed data and other arguments from the plot configuration.

As such, the this base class is agnostic to the exact way of how plot output is generated; the plot function is responsible for that.

	Using the data transformation framework for plot data selection

	Specializing BasePlotCreator

	Adjusting the data transformation routine

Using the data transformation framework for plot data selection

The data selection and transformation framework framework is a central part of dantro:
Using a directed, acyclic graph (DAG) of operations, it allows to work rather generically on the plot data held in a data tree.
This is a powerful tool, especially when combined with the plotting framework.

The motivation for using the data transformation framework for plotting is the following:
Ideally, a plot function should focus only on the visualization of data: creating a meaningful representation of the data, be it a simple line plot, a heatmap or some other form of plot.
Everything else that happens before (data selection, pre-processing, transformation, etc.) and after (adjusting plot aesthetics, saving the plot, etc.) should ideally be decoupled from that process and, if possible, automated.

The BasePlotCreator aims to take care of what happens “before”, data selection and transformation, and it uses the data transformation framework for that.
(For what happens “after”, more assumptions need to be made, which are only possible when having decided on a plot backend, like The PyPlotCreator does.)

To that end, the BasePlotCreator uses a configuration-based syntax that can be passed alongside the plot configuration itself.
This config-based declaration is optimized for specification via YAML and looks something like this:

my_plot:
 creator: base

 select:
 mean_data:
 path: path/to/some_data
 transform:
 - .mean
 std_data:
 path: path/to/some_data
 transform:
 - .std

For more syntax examples, see Plot Data Selection.

Additionally, this approach allows to cache transformation results to a file.
This is very useful when the analysis of data takes a large amount of time compared to the plotting itself.

Specializing BasePlotCreator

As common throughout dantro, the plot creators are specialized using class variables.
For BasePlotCreator, a specialization can look like this:

import dantro.plot.creators

class MyPyPlotCreator(dantro.plot.creators.BasePlotCreator):
 """My custom plot creator"""

 EXTENSIONS = ("pdf", "png")
 """Allow only PDF or PNG extensions."""

 DAG_USE_BY_DEFAULT = True
 """Use the data transformation framework by default."""

Hint

Make sure that the PlotManager knows about your new creator by setting its CREATORS class variable accordingly.

Adjusting the data transformation routine

In the BasePlotCreator, BasePlotCreator._prepare_plot_func_args() is responsible of invoking data transformation, which is done right before invocation of the plot function.
Data selection and transformation itself happens in BasePlotCreator._perform_data_selection().

If you plan to change the behavior of this aspect of the plot creator, ideally do so in BasePlotCreator._perform_data_selection() itself.
We recommend to only make minimal changes to BasePlotCreator._prepare_plot_func_args().

Hint

For implementation examples see the parameter space plot creators.

The PyPlotCreator

The PyPlotCreator focusses on creating plots using matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot].

Like the BasePlotCreator, it relies on the plots being defined in a so-called plot function, which can be retrieved from importable modules or even from some file path.
These plot functions are meant to provide a bridge between the selected and transformed data and their visualization.
The PyPlotCreator aims to make this process as smooth as possible by implementing a number of automations that reduce boilerplate code:

	The plot helper interface provides an interface to matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] and allows configuration-based manipulation of the axes limits, scales, and many other structural elements of a plot.

	With style contexts, plot aesthetics can be controlled right from the plot configuration, making consistent plotting styles more accessible.

	The integration of the matplotlib.animation [https://matplotlib.org/stable/api/animation_api.html#module-matplotlib.animation] framework allows to easily implement plot functions that generate animation output.

Hint

There are further specializations of the PyPlotCreator that make plotting of data originating from parameter sweeps easier.
See Plots from Multidimensional Data or the creator overview.

Note

Prior to dantro 0.18, this plot creator used to be called ExternalPlotCreator, highlighting its ability to load external modules.

	The PlotHelper

	Adjusting a Plot’s Style

	Implementing Plot Functions

	Recommended plot function signature

	Other possible plot function signatures

	Without data transformation framework

	Bare basics

	Animations

	Dynamically entering/exiting animation mode

	Specializing PyPlotCreator

The PlotHelper

The PyPlotCreator allows to automate many of the matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] function calls that would usually have to be part of the plot function itself.
Instead, the PlotHelper takes up this task and provides a config-accessible bridge to the matplotlib interface.

See here for more information on the plot helper framework.

Adjusting a Plot’s Style

Using the style keyword, matplotlib RC parameters can be configured fully via the plot configuration; no need to touch the code.
Basically, this allows setting the matplotlib.rcParams [https://matplotlib.org/stable/api/matplotlib_configuration_api.html#matplotlib.rcParams] and makes the matplotlib stylesheets (matplotlib.style [https://matplotlib.org/stable/api/style_api.html#module-matplotlib.style]) available.

The following example illustrates the usage:

my_plot:
 # ...

 # Configure the plot style
 style:
 base_style: ~ # optional, name of a matplotlib style to use
 rc_file: ~ # optional, path to YAML file to load params from
 # ... all further parameters are interpreted directly as rcParams

In the following example, the ggplot style is used and subsequently adjusted by setting the linewidth, marker size and label sizes.

my_ggplot:
 # ...

 style:
 base_style: ggplot
 lines.linewidth : 3
 lines.markersize : 10
 xtick.labelsize : 16
 ytick.labelsize : 16

For the base_style entry, choose the name of a matplotlib stylesheet [https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html].
For valid RC parameters, see the matplotlib customization documentation [https://matplotlib.org/stable/tutorials/introductory/customizing.html].

Hint

Even the axes property cycle [https://matplotlib.org/stable/tutorials/intermediate/color_cycle.html], i.e. the axes.prop_cycle RC parameter, can be adjusted in this way.
For example, to use a Tab20-based color cycle, specify:

my_plot:
 # ...
 style:
 axes.prop_cycle: "cycler('color', ['1f77b4', 'aec7e8', 'ff7f0e', 'ffbb78', '2ca02c', '98df8a', 'd62728', 'ff9896', '9467bd', 'c5b0d5', '8c564b', 'c49c94', 'e377c2', 'f7b6d2', '7f7f7f', 'c7c7c7', 'bcbd22', 'dbdb8d', '17becf', '9edae5'])"

The full syntax is supported here, including + and * operators between cycler(..) definitions.

Implementing Plot Functions

This section details how to implement plot functions for the PyPlotCreator, making use of its specializations.

Recommended plot function signature

The recommend plot function signature for this creator is not that different from the general one:
It also makes use of the data transformation framework (implemented by the parent class).

Additionally, however, it uses the plot helper framework which requires that the plot function can handle an additional argument, hlpr.
This PlotHelper is the bridge to matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] and thus also needs to be used to invoke any plot-related commands:

from dantro.plot import is_plot_func, PlotHelper

@is_plot_func(use_dag=True, required_dag_tags=("x", "y"))
def my_plot(*, data: dict, hlpr: PlotHelper, **plot_kwargs):
 """A creator-averse plot function using the data transformation
 framework and the plot helper framework.

 Args:
 data: The selected and transformed data, containing specified tags.
 hlpr: The associated plot helper.
 **plot_kwargs: Passed on to matplotlib.pyplot.plot
 """
 # Create a lineplot on the currently selected axis
 hlpr.ax.plot(data["x"], data["y"], **plot_kwargs)

 # Done! The plot helper saves the plot :tada:

Super simple, aye? :)

In the case of the PyPlotCreator, such a plot function can be averse to any creator, because it is compatible not only with the PyPlotCreator but also with derived creators.
This makes it very flexible in its usage, serving solely as the bridge between data and their visualization:
For that reason, the decorator does not specify a creator argument, but the plot configuration does.
The corresponding plot configuration could then look like this:

my_plot:
 creator: pyplot

 # Select the plot function
 # ...

 # Select data
 select:
 x: data/MyModel/some/path/foo
 y:
 path: data/MyModel/some/path/bar
 transform:
 - .mean
 - increment

 # ... further arguments

For more detail on the syntax, see above.

Note

While the plot function signature can remain as it is regardless of the chosen specialization of the PyPlotCreator, the plot configuration will differ for the specializations.
See here and here for more information.

Note

This is the recommended way to define a plot function because it outsources a lot of the typical tasks (data selection and plot aesthetics) to dantro, allowing you to focus on implementing the bridge from data to visualization of the data.

Using these features not only reduces the amount of code required in a plot function but also makes the plot function future-proof.
We highly recommend to use this interface.

Other possible plot function signatures

Without data transformation framework

There is the option to not using the transformation framework for data selection while still profiting from the plot helper.
Simply use the plot function decorator without passing use_dag:

from dantro import DataManager
from dantro.plot import is_plot_func, PyPlotCreator, PlotHelper

@is_plot_func(creator=PyPlotCreator)
def my_plot(
 *, dm: DataManager, hlpr: PlotHelper, **additional_plot_kwargs
):
 """A simple plot function using the plot helper framework.

 Args:
 dm: The loaded data tree.
 hlpr: The plot helper, taking care of setting up the figure and
 saving the plot.
 **additional_kwargs: Anything else from the plot config.
 """
 # Select some data ...
 data = dm["foo/bar"]

 # Create the plot
 hlpr.ax.plot(data)

 # Done. The helper will save the plot after the plot function returns.

Note

The dm argument is only provided when not using the DAG framework.

Hint

To omit the helper as well, pass use_helper=False to the decorator.
In that case you will also have to take care of saving the plot to the out_path provided as argument to the plot function.

Bare basics

If you do not want to use the decorator either, the signature is the same as in the case of the base class.

Animations

With the PlotHelper framework it is really simple to let your plot function support animation.

Say you have defined the following plot function:

from dantro.plot import is_plot_func, PlotHelper

@is_plot_func(use_dag=True, required_dag_tags=('time_series',))
def plot_some_data(*, data: dict,
 hlpr: PlotHelper,
 at_time: int,
 **plot_kwargs):
 """Plots the data ``time_series`` for the selected time ``at_time``."""
 # Via plot helper, perform a line plot of the data at the specified time
 hlpr.ax.plot(data['time_series'][at_time], **plot_kwargs)

 # Dynamically provide some information to the plot helper
 hlpr.provide_defaults('set_title',
 title="My data at time {}".format(at_time))
 hlpr.provide_defaults('set_labels', y=dict(label="My data"))

To now make this function support animation, you only need to extend it by some
update function, register that function with the helper, and mark the plot function as supporting an animation:

from dantro.plot import is_plot_func, PlotHelper

@is_plot_func(use_dag=True, required_dag_tags=('time_series',),
 supports_animation=True)
def plot_some_data(*, data: dict,
 hlpr: PlotHelper,
 at_time: int,
 **plot_kwargs):
 """Plots the data ``time_series`` for the selected time ``at_time``."""
 # Via plot helper, perform a line plot of the data at the specified time
 hlpr.ax.plot(data['time_series'][at_time], **plot_kwargs)

 # Dynamically provide some information to the plot helper
 hlpr.provide_defaults('set_title',
 title="My data at time {}".format(at_time))
 hlpr.provide_defaults('set_labels', y=dict(label="My data"))

 # End of regular plot function
 # Define update function
 def update():
 """The animation update function: a python generator"""
 # Go over all available times
 for t, y_data in enumerate(data['time_series']):
 # Clear the plot and plot anew
 hlpr.ax.clear()
 hlpr.ax.plot(y_data, **plot_kwargs)

 # Set the title with current time step
 hlpr.invoke_helper('set_title',
 title="My data at time {}".format(t))
 # Set the y-label
 hlpr.provide_defaults('set_labels', y=dict(label="My data"))

 # Done with this frame. Yield control to the plot framework,
 # which will take care of grabbing the frame.
 yield

 # Register the animation update with the helper
 hlpr.register_animation_update(update)

Ok, so the following things happened:

	The update function is defined

	The update function is passed to helper via dantro.plot.plot_helper.PlotHelper.register_animation_update()

	The plot function is marked supports_animation

This is all that is needed to define an animation update for a plot.

There are a few things to look out for:

	In order for the animation update actually being used, the feature needs to be enabled in the plot configuration.
The behaviour of the animation is controlled via the animation key; in it, set the enabled flag.

	The animation update function is expected to be a so-called Python Generator, thus using the yield keyword.
For more information, have a look here [https://wiki.python.org/moin/Generators].

	The file extension is taken care of by the PlotManager, which is why it needs to be adjusted on the top level of the plot configuration, e.g.
when storing the animation as a movie.

	While whatever happens before the registration of the animation function is also executed, the animation update function should be build such as to also include the initial frame of the animation.
This is to allow the plot function itself to be more flexible and the animation update not requiring to distinguish between initial frame and other frames.

	In the example above, the set_labels helper has to be invoked for each frame as hlpr.ax.clear removes it.
To avoid this, one could use the set_data method of the Line2d [https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html] object, which is returned by matplotlib.pyplot.plot [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html], to update the data.
Depending on the objects used in your plot functions, there might exist a similar solution.

Warning

If it is not possible or too complicated to let the animation update function set the data directly, one typically has to redraw the axis or the whole figure.

In such cases, two important steps need to be taken in order to ensure correct functioning of the PlotHelper():

	Specifying the invoke_helpers_before_grab flag when calling register_animation_update(), such that the helpers are invoked before grabbing each frame.

	If using a new figure object and/or axes grid, that needs to be communicated to the PlotHelper() via attach_figure_and_axes().

For example implementations of such cases, refer to the plot functions specified in the dantro.plot.funcs.generic module.

An example for an animation configuration is the following:

my_plot:
 # Regular plot configuration
 # ...

 # Specify file extension to use, with leading dot (handled by PlotManager)
 file_ext: .png # change to .mp4 if using ffmpeg writer

 # Animation configuration
 animation:
 enabled: true # false by default
 writer: frames # which writer to use: frames, ffmpeg, ...
 writer_kwargs: # additional configuration for each writer
 frames: # passed to 'frames' writer
 saving: # passed to Writer.saving method
 dpi: 254

 ffmpeg:
 init: # passed to Writer.__init__ method
 fps: 15
 saving:
 dpi: 92
 grab_frame: {} # passed to Writer.grab_frame and from there to savefig

 animation_update_kwargs: {} # passed to the animation update function

Dynamically entering/exiting animation mode

In some situations, one might want to dynamically determine if an animation should be carried out or not.
For instance, this could be dependent on whether the dimensionality of the data requires another representation mode (the animation) or not.

For that purpose, the PlotHelper supplies two methods to enter or exit animation mode, enable_animation() and disable_animation().
When these are invoked, the plot function is directly left, the PyPlotCreator enables or disables the animation, and the plot function is invoked anew.

A few remarks:

	The decision on entering or exiting animation mode should ideally occur as early as possible within a plot function.

	Repeatedly switching between modes is not possible.
You should implement the logic for entering or exiting animation mode in such a way, that flip-flopping between the two modes is not possible.

	The animation parameters need to be given if entering into animation mode is desired.
In such cases, animation.enabled key should be set to False.

	The PlotHelper instance of the first plot function invocation will be discarded and a new instance will be created for the second invocation.

A plot function could then look like this:

from dantro.plot import is_plot_func, PlotHelper

@is_plot_func(use_dag=True, required_dag_tags=('nd_data',),
 supports_animation=True)
def plot_nd(*, data: dict, hlpr: PlotHelper,
 x: str, y: str, frames: str=None):
 """Performs an (animated) heatmap plot of 2D or 3D data.

 The ``x``, ``y``, and ``frames`` arguments specify which data dimension
 to associate with which representation.
 If the ``frames`` argument is not given, the data needs to be 2D.
 """
 d = data['nd_data']

 if frames and d.ndim == 3:
 hlpr.enable_animation()
 elif not frames and d.ndim == 2:
 hlpr.disable_animation()
 else:
 raise ValueError("Need either 2D data without the ``frames`` "
 "argument, or 3D data with the ``frames`` "
 "argument specified!")

 # Do the 2D plotting for x and y dimensions here
 # ...

 def update():
 """Update the heatmap using the ``frames`` argument"""
 # ...

 hlpr.register_animation_update(update)

Specializing PyPlotCreator

This is basically the same as in the base class with the additional ability to specialize the plot helper.

For specializing the PlotHelper, see here and then set the PyPlotCreator.PLOT_HELPER_CLS class variable accordingly.

Note

For an operational example in a more complex framework setting, see the specialization used in the utopya project [https://gitlab.com/utopia-project/utopya/-/blob/main/utopya/eval/plotcreators.py].

Plots from Multidimensional Data

The dantro plotting framework tries to make the plotting of multidimensional data as easy as possible.
This page describes how to define plot functions and plot configurations for these scenarios.

If you have not already done so, make sure to read up on the corresponding nomenclature (universes and multiverses, introduced here) before continuing on this page.

	UniversePlotCreator: Plots from Universe Data

	Universe plots using DAG framework (recommended)

	Without DAG framework

	MultiversePlotCreator: Plots from Multiverse Data

	Multiverse plots using DAG framework (recommended)

	Skipping multiverse plots

UniversePlotCreator: Plots from Universe Data

To create plots that use data from a single universe, use the UniversePlotCreator.
It allows to specify a set of universes to create plots for and provides the plotting function with data from the selected universes.

The plot configuration for a universe plot requires as an additional argument a selection of which universes the plot should be created for.
This is done via the universes argument:

my_universe_plot:
 universes: all # can also be:
 # 1) 'first', 'any'
 # 2) a dict specifying a multiverse subspace
 # to restrict the plots to
 # 3) a list of (integer) universe IDs
 #
 # ... more arguments

Universe plots using DAG framework (recommended)

Use the creator-averse plot function definition and specify the creator in the plot configuration.
You can then use the regular syntax to select the desired data, based on the currently selected universe.

When using the recommended creator-averse plot function signature, the DAG is automatically enabled and allows to select data in the following way:

my_plot:
 creator: universe
 universes: all

 # Select data within the current universe
 select:
 some_data: data/MyModel/some/path/foo
 some_other_data:
 path: data/MyModel/some/path/bar
 transform:
 - mean: [!dag_prev]
 - increment: [!dag_prev]

 # Perform some transformation on the data
 transform:
 - add: [!dag_tag some_data, !dag_tag some_other_data]
 tag: result

 # ... further arguments

In this case, the available tags would be some_data, some_other_data, and result.
Furthermore, for the universe plot creator, the uni tag is always available as well.

For more details, have a look at Special case: UniversePlotCreator and the general remarks on the transformation framework.

Remarks

	To access elements within each universe, you can use the uni tag and either do a selection of the desired element within the DAG framework or do it in the plot function, based on the uni result tag.

	Use the dag_options.select_path_prefix option to navigate to some base path, making subsequent path definitions in select a bit simpler.
In the example above, the paths would just be some/path/foo and some/path/bar when setting dag_options.select_path_prefix to data/MyModel, thus always starting paths within some base group.

	To traverse through some dict-like entry within the universe, you can also use the DAG framework:

my_plot:
 creator: universe

 select:
 # This is equivalent to uni['cfg']['foo']['bar']['some_param']
 some_param:
 path: cfg
 with_previous_result: true
 transform:
 - getitem: foo
 - getitem: bar
 - getitem: some_param

Without DAG framework

Without the DAG framework, the data needs to be selected manually:

from dantro import DataManager
from dantro.groups import ParamSpaceStateGroup as UniverseGroup
from dantro.plot import is_plot_func, PlotHelper, UniversePlotCreator

@is_plot_func(creator_type=UniversePlotCreator)
def my_plot(dm: DataManager, *, uni: UniverseGroup, hlpr: PlotHelper,
 **additional_kwargs):
 """A universe-specific plot function using the data transformation
 framework and the plot helper framework.

 Args:
 dm: The DataManager, containing *all* data
 uni: The currently selected universe. Select the data from here.
 hlpr: The associated plot helper.
 **additional_kwargs: Anything else from the plot config. Ideally,
 specify these explicitly rather than gathering them via ``**``.
 """
 # Get the data
 x = uni['data/MyModel/foo']
 y = uni['data/MyModel/bar']

 # Plot the data
 hlpr.ax.plot(x, y)

 # Add some information from the universe configuration
 cfg = uni['cfg']
 some_param = cfg['MyModel']['some_param']
 hlpr.provide_defaults('set_title',
 title="Some Parameter: {}".format(some_param))

 # Done. The plot helper saves the plot.

Note how the data selection is hard-coded in this example.
In other words, when not using the data selection and transformation framework, you have to either hard-code the selection or parametrize it, allowing to specify it via the plot configuration arguments.

MultiversePlotCreator: Plots from Multiverse Data

To create plots that use data from more than one universe — henceforth called multiverse data — use the MultiversePlotCreator.
This creator makes it possible to select and combine the data from all selected individual universes and provides the result of the combination to the plot function.

This requires the handling of multidimensional data and depends on the dimensionality of the chosen parameter space.
Say the selected data from each universe has dimensionality three and a parameter sweep was done over four dimensions, then the data provided to the plot function has seven dimensions.

Multiverse plots using DAG framework (recommended)

Again, use the creator-averse plot function definition and specify the creator in the plot configuration.
For this creator, a special syntax exists to select and combine the multiverse data.

When using the recommended creator-averse plot function signature, the DAG is automatically enabled and allows to select data using the select_and_combine key:

my_plot:
 creator: multiverse

 # Multiverse data selection via DAG framework
 select_and_combine:
 fields:
 some_data: some/path/foo
 some_other_data:
 path: some/path/bar
 transform:
 - mean: [!dag_prev]
 - increment: [!dag_prev]

 base_path: data/MyModel # ... to navigate to the model base group

 # Default values for combination method and subspace selection; can be
 # overwritten within the entries specified in ``fields``.
 combination_method: concat # can be 'concat' (default) or 'merge'
 subspace: ~ # some subspace selection

 transform:
 - add: [!dag_tag some_data, !dag_tag some_other_data]
 tag: result

Again, for more details, have a look at Special case: MultiversePlotCreator and the general remarks on the transformation framework.

Hint

The subspace selection happens via the paramspace package [https://pypi.org/project/paramspace/].

Skipping multiverse plots

For skipping MultiversePlotCreator plots, the expected_multiverse_ndim argument can optionally be specified in the plot configuration.
The argument specifies a set of dimensionalities with which plotting is possible; if the dimensionality of the associated ParamSpaceGroup is not part of this set, the plot will be skipped.

my_plot:
 creator: multiverse

 # Declare that this plot requires a 2-, 3-, or 4-dimensional associated
 # ParamSpaceGroup and should be skipped if this condition is not met
 expected_multiverse_ndim: [2,3,4]

 # ...

See Skipping Plots for general information about skipping of plots.

The PlotHelper

The aim of the PlotHelper is to let the plot functions focus on what cannot easily be automated: being the bridge between some selected or transformed data and its visualization.
The plot function should not have to concern itself with things like plot aesthetics, as that can easily be automated.

The PlotHelper can make your life easier by quite a lot as it already takes care of setting up and saving a figure and makes large parts of the matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] interface accessible via the plot configuration.
That way, you don’t need to touch Python code for trivial tasks like changing the axis limits.
But even more advanced tasks, such as creating an animation, are conveniently done using this framework.

Due to the PlotHelper focussing on the pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] interface, it is only accessible via the PyPlotCreator, see The PlotHelper.

Most importantly, it will make your plots future-proof and let them profit from upcoming features.
A glimpse of that can be seen in how easy it is to implement an animated plot, see below.

To learn, how you can enable the PlotHelper in your plot function, check out the section on implementing plot functions.

As an example, the following plot configuration sets the title of the plot as well as the labels and limits of the axes:

my_plot:
 # ...

 # Configure the plot helpers
 helpers:
 set_title:
 title: This is My Fancy Plot
 set_labels:
 x: A
 y: Counts N_A
 set_limits:
 x: [0, max]
 y: [1.0, ~]

The enabled helpers are automatically invoked after the plot function has been called and before the plot is saved.
Aside from specifying values in the configuration, helpers can also be dynamically (re-)configured from within the plot function using PlotHelper.provide_defaults() or be invoked directly using invoke_helper().
To ensure that helpers stay disabled, regardless of configuration, you can call mark_disabled() inside the plot function.

Hint

The syntax for each individual helper is in large parts equivalent to matplotlib’s pyplot interface [https://matplotlib.org/stable/api/pyplot_summary.html].
It is however wrapped and simplified in some cases, e.g. by using just x and y as arguments and gathering such functionality under one helper.

If you get it wrong, the error message aims to be helpful: it provides the full signature and docstring of the invoked helper such that you can adjust the parameters to the required format.

Thus, trial and error is a useful initial approach before digging into the PlotHelper API reference.

Furthermore, notice how you can combine the capabilities of the plot helper framework with the ability to set the plot style.

Available helpers

The following helper methods are available:

In [1]: from dantro.plot import PlotHelper

In [2]: hlpr = PlotHelper(out_path="~/my_output_directory")

In [3]: print("\n".join(hlpr.available_helpers))
align_labels
annotate
autofmt_xdate
call
despine
figcall
set_figlegend
set_hv_lines
set_labels
set_legend
set_limits
set_margins
set_scales
set_suptitle
set_texts
set_tick_formatters
set_tick_locators
set_ticks
set_title
subplots_adjust

Additionally, there are “special” helpers that help with setting up and storing a figure:

	PlotHelper.setup_figure()

	PlotHelper.save_figure()

Note

By default, helpers are regarded as axis-level helpers, as they operate on a single axis object.

However, there are some helpers that may only be used on the whole figure, so-called figure-level helpers (e.g. set_suptitle and set_figlegend).

Axis-specific helper configurations

The PlotHelper is not restricted to a single axis, but it can manage multiple axes aranged on a grid.
A possible plot configuration with axis-specific helpers could look as follows:

my_plot:
 # ...

 # Configure the plot helpers
 helpers:
 setup_figure:
 ncols: 2
 sharey: True
 set_limits:
 x: [0, max]
 y: [1.0, ~]
 axis_specific:
 my_left_axis:
 axis: [0, 0]
 set_title:
 title: This is my left plot
 my_right_axis:
 axis: [1, 0]
 set_title:
 title: This is my right plot

Putting the above configuration into words:

	The PlotHelper.setup_figure() helper sets up a figure with with two subfigures that are accessible via the coordinate pairs [0, 0] and [1, 0].

	The set_limits helper is applied to all existing axes.

	Helpers for specific axes can be configured by passing an axis_specific dictionary.
In the plot function, you can then switch axes using the PlotHelper.select_axis() method (the [0, 0] axis is selected initially).

Note

The keys for the axis_specific configuration are arbitrary; the axes are defined solely by the internal axis entries.
While this requires to specify a name for the axis, it also allows convenient recursive updating; thus, it is advisable to choose a somewhat meaningful name.

Alternatively, the axes match can be defined via the update key directly, for instance:

my_plot:
 # ...
 helpers:
 setup_figure:
 ncols: 2
 sharey: True
 axis_specific:
 [0, 0]:
 set_title:
 title: This is my left plot
 [1, 0]:
 axis: [1, 0]
 set_title:
 title: This is my right plot

Hint

This syntax also supports simple pattern matching to apply axis-specific updates to plots from a whole row or column.
To span over a row or column, simply replace the entry by None (in YAML: ~).

For instance, [0, ~] matches all subplots in the first column and [~, -1] matches the whole bottom row.

Remarks

	Plot helpers can also be explicitly disabled via the configuration:

helpers:
 set_labels:
 enabled: false
 # ...

	By default, an axis-level plot helper is not invoked on an axis that is empty, i.e. an axis that has no artists associated with it.
This is to reduce errors that stem from e.g. attempting to extract limit values from an axis without data.
If invocation is required nevertheless, it can be explicitly allowed via the skip_empty_axes configuration key:

helpers:
 set_limits:
 skip_empty_axes: false
 # ...

Specializing the helper

The dantro PlotHelper already provides a default set of helpers that provide access to most of the matplotlib interface.
If you need any additional customized helpers, you can easily add new methods to a specialization of the helper:

import dantro.plot

class MyPlotHelper(dantro.plot.PlotHelper):
 """A specialization of the dantro ``PlotHelper`` which can be used to
 add additional helper methods.

 New helper methods can be added here, names prefixed with ``_hlpr_``.
 """

 def _hlpr_do_stuff(self, **kwargs):
 """My custom ``do_stuff`` helper"""
 # Do stuff here ...
 pass

Note that you will have to communicate this new plot helper type to the creator by setting PLOT_HELPER_CLS.

Plot Data Selection

This page describes how the plot creators can make data for plotting available in a programmatic fashion.

Each plot creator is associated with a DataManager instance, which holds all the data that is currently available.
This data is usually made available to you such that you can select data which you can then pass on to whatever you use for plotting.

While manual selection directly from the data manager suffices for specific cases, automation is often desired.
The uniform interface of the DataManager paired with the TransformationDAG framework makes automated data selection and transformation for plotting possible while making available all the benefits of the Data Transformation Framework framework:

	Generic application of transformations on data

	Fully configuration-based interface

	Caching of computationally expensive results

This functionality is embedded at the level of the BasePlotCreator, making it available for all plot creators and allowing subclasses to tailor it to their needs.

Additionally, result placeholders can be specified inside the plot configuration, thus allowing to use transformation results not only for data selection, but also for programmatically determining other configuration parameters.

	General remarks

	Enabling DAG usage

	Arguments to control DAG behaviour

	DAG object caching

	Defining a generic plot function

	Specifying required tags

	Special case: UniversePlotCreator

	Special case: MultiversePlotCreator

	Using data transformation results in the plot configuration

	Caveats

	Implementation details

	DAG Visualization

	DAG generation

	Controlling when to generate a DAG plot

	Changing plot content

	Setting plot aesthetics

	Exporting a DAG representation

	Remarks

	Full Interface

General remarks

This section holds information that is valid for all plot creators.

Enabling DAG usage

If using the recommended plot function signature, the use_dag key can be specified right there and enables the data transformation framework.
This declares that the plot function expects data selection to occur via the transformation framework.

After computation, the results are made available to the selected python plot function via the data keyword argument, which is a dictionary of the tags that were selected to be computed.

Setting use_dag in the plot configuration

Alternatively, DAG usage can be controlled via the use_dag argument in the plot configuration:

Some plot configuration file

my_plot:
 use_dag: true

 # ... more arguments

Hint

If setting use_dag in the plot configuration, take care not to create conflicts with the chosen plot function signature.

Arguments to control DAG behaviour

You then have the following arguments available to control its behaviour:

	select and transform: select data and perform transformations on it, see add_nodes().

	compute_only: controls which tags are to be computed, see compute()

	dag_options: passed to TransformationDAG initialization, e.g. to control file_cache_defaults, verbosity, or adding transformations via the define interface, see The define interface.

	dag_visualization: controls visualization of the DAG which can be very helpful for debugging, see below.
These arguments are passed to _generate_DAG_vis().

The creation of the DAG and its computation is controlled by the chosen plot creator and can be specialized to suit that plot creator’s needs.

Note

If DAG usage is enabled, these arguments will be used exclusively for the DAG, i.e.: they are not available downstream in the plot creator or the plot function.

Hint

To use meta-operations for plot data selection, define them under the dag_options.meta_operations key of a plot configuration.

Same for adding nodes via the define interface (see The define interface), which is also only available via dag_options.define.

Also check out the dantro base plot configs from which some pre-defined meta-operations can be included using based_on.

Hint

Specialized plot creators, like those based on paramspace operations may implement an expanded syntax.

Example

Some example plot configuration to select some containers from the data manager, perform simple transformations on them and compute a result tag:

Some plot configuration file

my_plot:
 creator: my_creator

 # ... some plot arguments here ...

 # Data selection via DAG framework
 use_dag: true
 select:
 foo: some/path/foo
 bar:
 path: some/path/bar
 transform:
 - mean: [!dag_prev]
 - increment: [!dag_prev]
 transform:
 - add: [!dag_tag foo, !dag_tag bar]
 tag: result
 compute_only: [result]
 dag_options:
 define:
 foo: bar
 verbosity: 3 # to show more profiling statistics (default: 1)
 file_cache_defaults:
 write: true
 read: true

 # ... other parameters here are passed on to TransformationDAG.__init__

DAG object caching

For very complex data transformation sequences, DAGs can have many hundreds of thousands of nodes.
In those cases, parsing the DAG configuration and creating the corresponding objects can be time-consuming and begin to noticeably prolong the plotting procedure.

To remedy this, the plotting framework implements memory-caching of TransformationDAG objects such that they can be re-used across multiple plots or repeated invocation of the same plot.
The cache is used if the DAG-related configuration parameters (transform, select, …) are equal, i.e. have equal results when serialized using repr.
In other words: if plots use the same data selection arguments, thus creating identical DAGs, the cache can be used.

Multiple aspects of caching can be controlled using the dag_object_cache parameter, passed via dag_options (see below):

	read: whether to read from the cache (default: false)

	write: whether to write from the cache (default: false)

	use_copy: whether to read and write a deep copy of the TransformationDAG object to the cache (default: true).

	clear: if set, will remove all objects from the cache (after reading from it) and trigger garbage collection (default: false)

	collect_garbage: can be used to separately control garbage collection, e.g. to suppress it despite clear having been passed.

Warning

Only use use_copy: false if you can be certain that plot functions do not change the object; this would create side effects that may be very hard to track down.

Note

The clear option will also invoke general garbage collection (if not explicitly disabled).
This will free up memory … but it may also take some time.

Example

Some plot configuration file

my_plot:
 # ... some plot arguments here ...

 # Data selection via DAG framework
 use_dag: true
 select:
 foo: some/path/foo
 bar:
 path: some/path/bar
 transform:
 - mean: [!dag_prev]
 - increment: [!dag_prev]
 transform:
 - add: [!dag_tag foo, !dag_tag bar]
 tag: result
 compute_only: [result]

 # Enable DAG object caching
 dag_options:
 dag_object_cache:
 read: true
 write: true

 # Other parameters (and their default values)
 # use_copy: true # true: cache a deep copy of the object
 # clear: false # true: clears the object cache and invokes
 # garbage collection
 # collect_garbage: ~ # true: invokes garbage collection
 # false: suppresses garbage collection even
 # if `clear` was set

my_other_plot_using_the_cache:
 based_on: my_plot # --> identical DAG arguments (if not overwritten below)

 # ... some plot arguments ...

Defining a generic plot function

Ideally, a plot function can focus on providing a bridge from data to a visual representation.
Using the PyPlotCreator, this becomes feasible:

from dantro.plot import is_plot_func, PlotHelper

@is_plot_func(use_dag=True)
def my_plot_func(*, data: dict, hlpr: PlotHelper, **further_kwargs):
 """This is my custom plot function with preprocessed DAG data"""
 # ...
 pass

The only required arguments here are data and hlpr.
The former contains all results from the DAG computation; the latter is the plot helper, which effectively is the interface to the visualization of the data.

Importantly, this makes the plot function averse to the specific choice of a creator: the plot function can be used with the PyPlotCreator and with its specializations, UniversePlotCreator and MultiversePlotCreator.
In such cases, the creator should not be specified in the decorator, but it should be given in the plot configuration.

Specifying required tags

If some specific tags are required, they can also be set in the decorator:

@is_plot_func(use_dag=True, required_dag_tags=('x', 'y'))
def simple_lineplot(*, data: dict, hlpr: "PlotHelper", **plt_kwargs):
 """Creates a simple line plot for selected x and y data"""
 hlpr.ax.plot(data['x'], data['y'], **plt_kwargs)

The DAG can be configured in the same way as in the general case.

Hint

If you want the computed tags to be directly available in the plot function signature, use the unpack_dag_results flag in the decorator:

@is_plot_func(use_dag=True, required_dag_tags=('x', 'y'),
 unpack_dag_results=True)
def simple_lineplot(*, x, y, hlpr: "PlotHelper", **plt_kwargs):
 """Creates a simple line plot for selected x and y data"""
 hlpr.ax.plot(x, y, **plt_kwargs)

Accessing the DataManager

As visible from the plot function above, the PyPlotCreator does not pass along the current DataManager instance as first positional argument (dm) when DAG usage is enabled.
This makes the plot function signature simpler and allows the creator-averse definition of plot functions while not restricting access to the data manager:

The data manager can still be accessed directly via the dm DAG tag.
Make sure to specify that it should be included, e.g. via compute_only or the required_dag_tags argument to the decorator.

Special case: UniversePlotCreator

For the UniversePlotCreator, data selection and transformation has to occur based on data from the currently selected universe.
This is taken care of automatically by this creator: it dynamically sets the select_base() property to the current universe, not requiring any further user action.
In effect, the select argument acts as if selections were to happen directly from the universe.

Except for the select_base and base_transform arguments, the full DAG interface is available via the UniversePlotCreator.

Hint

To restore parts of the functionality of the already-in-use select_base and base_transform arguments, the select_path_prefix argument of TransformationDAG can be used.
It can be specified as part of dag_options and is prepended to all path arguments specified within select.

Example

The following suffices to define a UniversePlotCreator-based plot function:

from dantro.plot import UniversePlotCreator

@is_plot_func(creator_type=UniversePlotCreator, use_dag=True)
def my_universe_plot(*, data: dict, hlpr: PlotHelper, **kwargs):
 """This is my custom universe plot function with DAG usage"""
 # ...
 pass

Hint

To not restrict the plot function to a specific creator, using the creator-averse plot function definition is recommended, which omits the creator_type in the decorator and instead specifies it in the plot configuration.

The DAG can be configured in the same way as in the general case.

Special case: MultiversePlotCreator

The MultiversePlotCreator has a harder job: It has to select data from the whole multiverse subspace, apply transformations to it, and finally combine it, with optional further transformations following.

It does so fully within the DAG framework by building a separate DAG branch for each universe and bundling all of them into a transformation that combines the data.
This happens via the select_and_combine argument.

Important: The select_and_combine argument behaves differently to the select argument of the DAG interface!
This is because it has to accommodate various further configuration parameters that control the selection of universes and the multidimensional combination of the selected data.

The select_and_combine argument expects the following keys:

	fields: all keys given here will appear as tags in the results dictionary.
The values of these keys are dictionaries that contain the same parameters that can also be given to the select argument of the DAG interface.
In other words: paths you would like to select from within each universe should be specified at select_and_combine.fields.<result_tag>.path rather than at select.<result_tag>.path.

	base_path (optional): if given, this path is prepended to all paths given under fields

	combination_method (optional, default: concat): how to combine the selected and transformed data from the various universes. Available parameters:

	concat: attempts to preserve data types but is only possible if the universes fill a hypercube without holes

	merge: which is always possible, but leads to the data type falling back to float. Missing data will be np.nan in the results.

The combination method can also be specified for each tag under select_and_combine.<result_tag>.combination_method.

	subspace (optional): which multiverse subspace to work on. This is evaluated fully by the paramspace.ParamSpace.activate_subspace method.
The subspace can also be specified for each tag under select_and_combine.<result_tag>.subspace.

Remarks

	The select operations on each universe set the omit_tag flag in order not to create a flood of only-internally-used tags. Setting tags manually here does not make sense, as the tag names would collide with tags from other universe branches.

	File caching is hard-coded to be disabled for the initial select operation and for the operation that attaches the parameter space coordinates to it. This behavior cannot be influenced.

	The best place to cache is the result of the combination method.

	The regular select argument is still available, but it is applied only after the select_and_combine-defined nodes were added and it does only act globally, i.e. not on each universe.

	The select_path_prefix argument to TransformationDAG is not allowed for the MultiversePlotCreator. Use the select_and_combine.base_path argument instead.

Example

A MultiversePlotCreator-based plot function can be implemented like this:

from dantro.plot import MultiversePlotCreator

@is_plot_func(creator_type=MultiversePlotCreator, use_dag=True)
def my_multiverse_plot(*, data: dict, hlpr: PlotHelper, **kwargs):
 """This is my custom multiverse plot function with DAG usage"""
 # ...
 pass

Hint

To not restrict the plot function to a specific creator, using the creator-averse plot function definition is recommended, which omits the creator_type in the decorator and instead specifies it in the plot configuration.

An associated plot configuration might look like this:

my_plot:
 # ... some plot arguments here ...

 # Data selection via DAG framework
 select_and_combine:
 fields:
 foo: some/path/foo
 bar:
 path: some/path/bar
 transform:
 - mean: [!dag_prev]
 - increment: [!dag_prev]

 combination_method: concat # can be ``concat`` (default) or ``merge``
 subspace: ~ # some subspace selection

 transform:
 - add: [!dag_tag foo, !dag_tag bar]
 tag: result

Handling missing data

In some cases, the ParamSpaceGroup associated with the MultiversePlotCreator might miss some states.
This can happen, for instance, if the to-be-plotted data is the result of a simulation for each point in parameter space and the simulation was stopped before visiting all these points.
In such a case, select_and_combine will typically fail.

Another reason for errors during this operation may be that the data structures between the different points in parameter space are different, such that a valid path within one ParamSpaceStateGroup (or: “universe”) is not a valid path in another.

To be able to plot the partial data in both of these cases, this plot creator makes use of the error handling feature in the data transformation framework.
It’s as simple as adding the allow_missing_or_failing key to select_and_combine:

Select the creator and use the generic facet grid plotting function
based_on:
 - .creator.multiverse
 - .plot.facet_grid

Select data, allowing for missing universes or failing .mean operation
select_and_combine:
 allow_missing_or_failing: true
 combination_method: merge # needed with allow_missing_or_failing
 fields:
 data:
 path: labelled/randints
 transform:
 - .mean: [!dag_prev , [x]]

This option kicks in when any of the following scenarios occur:

	A universe from the selected subspace is missing altogether

	The getitem operation for the given path within a universe fails

	Any operation within transform fails

In any of these cases, the data for the whole universe is discarded.
Instead, an empty xr.Dataset with the coordinates of that universe is used as fallback, with the following effect:
The corresponding coordinates will be present in the final xr.Dataset, but they contain no data (or NaNs).
The latter is also the reason why the merge combination method is required here.

Note

The rationale behind this behavior is that coordinate information is valuable, as it shows which data would have been available.
If desired, null-like data can be dropped afterwards using the .dropna operation.

In case of missing data, the error message will come from the dantro.expand_dims operation and contain information on the failure.

..warning:

If *all* data is missing, ``select_and_combine`` will not be able to succeed, because there will be nothing to combine and insufficient information to create a null-like output instead.
This feature is explicitly meant for data *partially* missing.

The expected error message for such a case will be coming from ``dantro.merge``:

::

 The Dataset resulting from the xr.merge operation can only be reduced
 to a DataArray, if one and only one data variable is present in the
 Dataset! However, the merged Dataset contains 0 data variables.

Hint

The allow_missing_or_failing argument accepts the same values as the allow_failure argument of the error handling framework; in fact, it sets exactly that argument internally.

Thus, the messaging behavior can be influenced as follows:

select_and_combine:
 allow_missing_or_failing: silent # other options: warn, log

Hint

Same as combination_method and subspace, the allow_missing_or_failing argument can also be specified separately for each field, overwriting the default value from the select_and_combine root level:

select_and_combine:
 allow_missing_or_failing: silent
 fields:
 some_data:
 allow_missing_or_failing: warn # overwrites default from above
 path: path/to/some/data

Applying transformations after combination of data

In some cases, it can be useful to define postprocessing transformations on the combined data.
For that purpose, there is the transform_after_combine option which can be added for each individual field or as a default on the select_and_combine level.
While this postprocessing can of course also be done alongside transform, it is often easier to define this alongside the field.

Some example use cases:

	Perform some postprocessing on all fields, without having to repeat the definitions.

	Use print to see the result of the combination directly, without having to touch the transform definition.

	Call .squeeze to reduce the one-sized dimensions of a combination, which can simplify some plotting calls.

Custom combination method

Apart from the merge and concat combination methods, a custom combination method can also be used by specifying the name of an operation that is capable of combining the data in a desired way:

select_and_combine:
 # further kwargs are passed on to the chosen custom operation

 fields:
 some_data:
 path: path/to/some_data
 combination_method:
 operation: my_combination_operation
 pass_pspace: false # default: false. If true, will pass additional
 # keyword argument ``pspace``.
 # further kwargs passed to combination operation
 combination_kwargs:

Such a combination operation needs to have the following signature:

def my_combination_function(objs: list, **kwargs) -> xr.DataArray:
 # ...

Here, objs is a list of the data from each individual parameter space state (“universe”), ready with attached coordinates.

Note

While the given objs already have coordinates assigned, you might be interested in some macroscopic information about the shape of the target data.
To that end, an additional argument can be passed to the combination function by setting combination_method.pass_pspace: true.

The pspace argument is then a ParamSpace object (from the paramspace package [https://pypi.org/project/paramspace/]) which contains information about the dimensionality of the data and the names and coordinates of the dimensions.
The data in objs is ordered in the same way as the iteration over pspace.

Full DAG configuration interface for multiverse selection

An example of all options available in the MultiversePlotCreator.

Full DAG specification for multiverse selection

my_plot:
 # ... some plot arguments here ...

 # DAG parameters
 # Selection from multiple universes with subsequent combination
 select_and_combine:
 fields:
 # Define a tag 'foo' that will use the defaults defined directly on
 # the ``select_and_combine`` level, see below
 foo: foo # ``base_path`` will be prepended here
 # resulting in: some/path/foo

 # Define a tag 'bar' that overwrites some of the defaults
 bar:
 path: bar
 subspace: # only use universes from a subspace
 seed: [0, 10]
 my_param: [-42., 42.]
 combination_method: merge # overwriting default specified below
 combination_kwargs: # passed to Transformation.__init__
 # of the *tagged* output node
 file_cache:
 read: true
 write:
 enabled: true
 # Configure the file cache to only be written if this
 # operation took a large amount of time.
 min_cumulative_compute_time: 20.
 allow_missing_or_failing: silent # transformations or path lookup
 # is allowed to fail
 transform:
 - mean: !dag_prev
 - increment: [!dag_prev]
 - some_op_with_kwargs:
 data: !dag_prev
 foo: bar
 spam: 42
 - operation: my_operation
 args: [!dag_prev]
 file_cache: {} # can configure file cache here

 transform_after_combine: # applied after combination
 - increment
 - print

 base_path: some_path # if given, prepended to ``path`` in ``fields``

 # Default arguments, can be overwritten in each ``fields`` entry
 combination_method: concat # can be ``concat`` (default), ``merge``.
 # If a dict, may contain the key
 # ``operation`` which will then be used as
 # the operation to use for combination; any
 # further arguments are passed on to that
 # operation call.
 subspace: ~ # some subspace selection
 allow_missing_or_failing: ~ # whether to allow missing universes or
 # failing transformations; can be: boolean,
 # ``log``, ``warn``, ``silent``
 transform_after_combine: ~

 # Additional selections, now based on ``dm`` tag
 select: {}

 # Additional transformations; all tags from above available here
 transform: []

 # Other DAG-related parameters: ``compute_only``, ``dag_options``
 # ...

Note

This does not include all possible options for DAG configuration but focusses on those options added by MultiversePlotCreator to work with multiverse data, e.g. subspace, combination_kwargs.

For other arguments, see Full syntax specification of a single transformation node.

Using data transformation results in the plot configuration

The data transformation framework can not only be used for the selection of plot data: using so-called “result placeholders”, data transformation results can be used as part of the plot configuration.

One use case is to include a computation result, e.g. some mean value, into the title of the plot via the plot helper.
In general, this feature allows to automate further parts of the plot configuration by giving access to the capabilities of the transformation framework.

Let’s look at an example plot configuration:

Select the creator and use the generic errorbar plotting function
based_on:
 - .creator.universe
 - .plot.facet_grid.errorbars

select:
 # 3D data with random integers
 some_data: randints

transform:
 # Compute the mean and standard deviation
 - .mean: [!dag_tag some_data, [x, z]]
 tag: mean
 - .std: [!dag_tag some_data, [x, z]]
 tag: stddev

 # Assemble them into a Dataset for the errorbars plot
 - xr.Dataset:
 - mean: !dag_tag mean
 stddev: !dag_tag stddev
 tag: data

 # Additional transformations for ResultPlaceholders
 - .mean: [!dag_tag mean]
 - .item # ... otherwise it's still an xr.DataArray
 - .format: ["Some Data (total mean: {:.3g})", !dag_prev]
 tag: title_str

Specify which data variable to plot as line and which as errorbands
y: mean
yerr: stddev
use_bands: true

Now, use the place holder in the helper configuration
helpers:
 set_title:
 title: !dag_result title_str

As can be seen here, there are additional operations defined within transform, which lead to the title_str tag.
In the helper configuration, that tag is referred to via the !dag_result YAML tag, thus creating a placeholder at the helpers.set_title.title key.

This illustrates the basic idea.
Of course, multiple placeholders can be used and they can be used almost everywhere inside the plot configuration; however, make sure to have a look at the caveats to learn about current limitations.

Hint

When adding placeholders, you will notice additional log messages which inform about the placeholder names and their computation profile.

Caveats

Where in the plot configuration can placeholders be used?

Placeholders can be used in wide parts of the plot configuration, but not everywhere.
If you encounter errors that refer to an unexpected ResultPlaceholder object, this is probably because they were defined in a part of the plot configuration where they cannot be resolved.

Where can (✅) placeholders always be used? Where can they never (❌) be used?

	✅ They can be used in all configuration entries that are passed through to the selected plot function of the The PyPlotCreator and derived plot creators.

	✅ They can be used within the helpers argument that controls the The PlotHelper.

	❌ They can not be used for entries related to data transformation (select, transform, dag_options, …) because these need to be evaluated in order to set up the TransformationDAG.

	❌ They can not be used for entries evaluated by the The PlotManager (out_path, etc) or the plot creator prior to data selection (animation, style, module, etc).

Why is my placeholder not resolved?

The identification and replacement of placeholders happens by recursively iterating through list-like and dict-like objects in the plot configuration dict.
Typically, this reaches all places where these placeholders could be defined.
The only exception being if the placeholder is in some part of an object that does not behave like a list or a dict.

Implementation details

Under the hood, the !dag_result YAML tag is read as a ResultPlaceholder object, which simply stores the name of the tag that should come in its place.
After the plot data was computed, the BasePlotCreator inspects the plot configuration and recursively collects all these placeholder objects.
The compute() method is then invoked to retrieve the specified results.
Subsequently, the placeholder entries in the plot configuration are replaced with the result from the computation.

For the above operations, functions from the paramspace package [https://gitlab.com/blsqr/paramspace] are used, specifically: paramspace.tools.recursive_collect and paramspace.tools.recursive_replace.

DAG Visualization

The DAG used for plot data selection and transformation can also be visualized.
This can be helpful to understand what kind of operations are carried out on which kind of data; this can be a big assistance during debugging.

By default, DAG visualization is enabled and will generate output if there was an error during the computation of data transformation results.
This can be controlled; see below.

However, there are many ways to further control when a visualization is created and how it looks like.
All parameters for controlling DAG visualization can be passed via the dag_visualization in a plot configuration.

Such a plot may look like these:

[image: DAG visualization]
[image: DAG visualization]
[image: DAG visualization]

DAG generation

The way the DAG is generated is controlled by the generation arguments, which are evaluated by generate_nx_graph().
Also see Graph representation and visualization for more information.

Controlling when to generate a DAG plot

For instance, if we’d like to always generate a DAG plot upon a computation, we can pass the following parameters:

my_dag_plot:
 # ...
 dag_visualization:
 when:
 only_once: true # only generate a single DAG plot
 on_compute_error: true # ... either upon failing computation
 on_compute_success: true # ... or upon a successful one.

Hint

To only plot if the creator runs in debug mode (i.e., with raise_exc set), set the scenario to debug instead of a boolean.

my_dag_plot:
 # ...
 dag_visualization:
 when:
 on_compute_error: debug

In the on_compute_error scenario, it is advisable to activate the show_node_status option for visualization, which will indicate at which node an error occurred:

[image: DAG visualization]
The colors indicate the following node status, as detailed in the legend:

	green: computation succeeded

	yellow: computation failed but a fallback value was used

	red: computation failed in this node

	dark red: computation failed in a node that this node depends on

Hint

To adjust the status colors, set the node_status_colors argument; see visualize() docstring for more info.

Changing plot content

What is shown in the plot depends mostly on the label attribute of the nodes.
By default, that content is generated via the get_description() operation function, which takes into account the name of the tag, the operation, and potential results.

What is shown in the plot is the label attribute, so in order to show something else there, we need to tell the visualize() method to use something else for the label.
By default, the description attribute is shown.
In the following example, we will instead show simply the operation attribute by setting the drawing.labels.from_attr entry of the configuration:

dag_visualization:
 drawing:
 labels:
 from_attr: operation
 # available attributes: tag, description, operation

Using the manipulate_attributes() function, we can also generate custom attributes.
In the following example, the name of that attribute is my_custom_attr, which is then also set as the label.

dag_visualization:
 generation:
 include_results: true
 manipulate_attrs:
 map_node_attrs:
 my_custom_attr:
 # Invoke *some* function; as an example, use a lambda to copy
 # over some node attribute data into `my_attr`
 call_lambda: "lambda *, attrs: attrs.get('result', '(no result)')"

 drawing:
 labels:
 # Use the custom attribute as a label
 from_attr: my_custom_attr

Note

If not setting drawing.labels.from_attr explicitly, it will always use the description attribute as the label.

Setting plot aesthetics

The looks of the DAG plot are set via the drawing keyword, which end up in the visualize() method:

my_dag_plot:
 # ...

 dag_visualization:
 drawing:
 # Whether to include default values for nodes, edges, and labels.
 # If true, will recursively update these defaults with the values
 # given below.
 # Set to false to use the networkx defaults instead.
 use_defaults: true

 # Arguments to networkx.draw_networkx_*
 nodes:
 node_color: blue
 # ...
 edges:
 width: 2.5
 # ...
 labels:
 font_size: 10
 # ...

Note

With networkx using matplotlib as drawing backend, there are a number of limitations:
For instance, it is not possible to let edges terminate exactly at the edge of the label’s box.

If this is desired, you may want to have a look at Exporting a DAG representation.

Exporting a DAG representation

For more control over the looks of the DAG, you can use the export keyword and use whatever other program you like to look at the plot output.
This will invoke export_graph().

In that case you may want to set plot_enabled: False as well:

my_dag_plot:
 # ...

 dag_visualization:
 plot_enabled: false
 export_enabled: true

 # ...

 export:
 manipulate_attrs:
 # Use the description as label and keep only that attribute
 map_node_attrs:
 label:
 attr_mapper.copy_from_attr: description
 keep_node_attrs:
 - label

 # Export formats
 graphml: true
 dot: true
 # ...

Remarks

For more information on possible arguments, see _generate_DAG_vis().
For a background on DAG representation as a networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], see Graph representation and visualization.

Note

The layouting algorithm cannot be changed yet.

If GraphViz and pygraphviz are installed, graphviz_layout() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_agraph.graphviz_layout.html#networkx.drawing.nx_agraph.graphviz_layout] is used with the dot algorithm.
If those are not installed, a multipartite_layout() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.multipartite_layout.html#networkx.drawing.layout.multipartite_layout] is carried out.

Full Interface

The following documents the full interface and the corresponding default values:

DAG Visualization interface; values given here are default values
dag_visualization:
 enabled: true # Main toggle
 plot_enabled: true # Whether to generate a plot
 export_enabled: true # Whether to export the graph

 # Whether to raise an exception if graph generation, plotting or
 # exporting failed. If None, will use the creator's setting.
 raise_exc: ~

 # Whether to *additionally* export the graph
 export:
 # Manipulate node or edge attributes (for export only)
 manipulate_attrs:
 map_node_attrs: {}
 map_edge_attrs: {}
 keep_node_attrs: True
 keep_edge_attrs: True

 # Export formats
 # ... need to be specified here.
 # Examples:
 gml: True
 graphml: # arguments passed on to writer
 infer_numeric_types: True
 # dot: True # Needs pygraphviz
 # ... more formats here ...

 # Output arguments
 output:
 plot_dir: ~ # None: Output will be aside the just-generated plot

 # A format string that is used to create the actual output path.
 # The `plot_dir` key is the one evaluated from the above argument.
 path_fstr: "{plot_dir:}/{name:}_dag_{scenario:}.pdf"

 # When to generate the visualization
 when:
 # General toggles
 always: false # If true: always generate a DAG plot
 only_once: false # If true: only generate one DAG plot

 # Scenarios: After which events to generate a DAG plot
 # Values can be: false, true, debug.
 # In case of 'debug', output is only generated if the creator was in
 # debug mode itself.
 on_compute_error: true
 on_compute_success: false
 on_plot_error: false
 on_plot_success: false

 # Generation kwargs
 generation:
 tags_to_include: all
 include_results: false
 lookup_tags: true
 manipulate_attrs:
 map_node_attrs:
 # Default operations: these are set by default
 operation: attr_mapper.dag.get_operation
 layer: attr_mapper.dag.get_layer
 description: attr_mapper.dag.get_description

 # Other available operations:
 # meta_operation: attr_mapper.dag.get_meta_operation
 # arguments: attr_mapper.dag.format_arguments
 # some_attr: attr_mapper.copy_from_attrs
 # another_attr: attr_mapper.set_value

 # ... or any other registered data operation:
 # my_attr:
 # call_lambda: "lambda *, attrs: attrs.get('foo')"

 # Whether to base layouting and visualization on optimized default
 # values or not. For illustration, the actual default values are used
 # below; they do NOT have to be set explicitly as done here!
 use_defaults: true

 # Whether to show the node status and which colors to use for it
 show_node_status: true
 node_status_color:
 initialized: lightskyblue
 queued: cornflowerblue
 computed: limegreen
 looked_up: forestgreen
 failed_here: red
 failed_in_dependency: firebrick
 used_fallback: gold
 no_status: silver

 # Layouting algorithm (and fallback)
 layout:
 model: graphviz_dot # requires graphviz and pygraphviz

 # In case the above model fails, silently switch to another one
 fallback: multipartite
 silent_fallback: true

 # Arguments for the respective layouting models
 model_kwargs:
 graphviz_dot: {}
 multipartite:
 align: horizontal
 subset_key: layer
 scale: -1

 # Whether to wiggle layouted positions to reduce edge overlap.
 # This is recommended for the multipartite layout, because it
 # does not handle edges going over multiple layers very well,
 # producing confusing edge overlaps ...
 wiggle:
 x: 0.005
 y: ~
 seed: 123 # set to None to always get new wiggles

 # Drawing, using networkx.draw_networkx_<...>
 drawing:
 nodes:
 alpha: 0.
 node_size: &node_size 600
 edges:
 arrows: true
 arrowsize: 12
 min_target_margin: 20
 min_source_margin: 20
 node_size: *node_size

 labels:
 # Which attribute to use as node label
 from_attr: description

 # Aesthetics; see matplotlib.patches.FancyBboxPatch
 font_size: 7
 bbox:
 fc: "#fffa"
 ec: "#666"
 linewidth: 0.5
 boxstyle: round

 # Figure creation via matplotlib.pyplot.figure
 figure_kwargs:
 figsize: [9, 7]

 # Scale figure size with "width" and "height" of the resulting graph
 # to avoid node overlapping; using these scaling factors.
 # Set to False to disable.
 scale_figsize: [0.25, 0.22]

 # Figure-level plot annotations: suptitle, figure legend for node color
 annotate_kwargs:
 # Title
 title: my custom DAG visualization
 title_kwargs: {}

 # Legend
 add_legend: true
 legend_kwargs: {}
 handle_kwargs: {}

 # Saving via matplotlib.pyplot.savefig
 save_kwargs:
 bbox_inches: tight

Plot Functions

This page gives an overview of plot functions that are implemented within dantro for the use with The PyPlotCreator and derived plot creators.
These plot functions are meant to be as generic as possible, allowing to work with a wide variety of data.
They make use of the Data Transformation Framework for Plot Data Selection.

To use these plot functions, the following information needs to be specified in the plot configuration:

my_plot:
 creator: pyplot # or: universe, multiverse, ...
 module: .generic # absolute: dantro.plot.funcs.generic
 plot_func: facet_grid # or some other plot function name

 # ...

	facet_grid(): A Declarative Generic Plot Function

	Automatically selecting plot kind

	Auto-encoding of plot layout

	Add custom plot kinds that support faceting

	ColorManager integration

	multiplot(): Plot multiple functions on one axis

	Use multiplot with multiple subplots

facet_grid(): A Declarative Generic Plot Function

Handling, transforming, and plotting high-dimensional data is difficult and often requires specialization to use-cases.
dantro provides the generic facet_grid() plot function that - together with the other dantro features - allows for a declarative way of creating plots from high-dimensional data.

The idea is that high-dimensional raw data first is transformed using the Data Transformation Framework.
The facet_grid() function then gets the ready-to-plot data as input and visualizes it by automatically choosing an appropriate kind of plot – if possible and not explicitly given – in a declarative way through the specification of layout keywords such as colums, rows, or hue.
This approach is called faceting [https://xarray.pydata.org/en/stable/user-guide/plotting.html#faceting]; dantro makes use of the excellent plotting functionality of xarray [https://xarray.pydata.org/en/stable/plotting.html] for this feature.

The facet_grid() plot function further extends the xarray plotting functionality by adding the possibility to create animations, simply by using the frames argument to specify the data dimension to represent as individual frames of an animation.

The PlotHelper interface then copes with the plot style and further layout.
All steps are fully configurable and optimized for the YAML-based plotting interface.
Thus, generating a plot of multidimensional data does not require touching any actual code but just specifying the desired representation in the plot configuration. 🎉

For more information, have a look at the facet_grid() docstring.

Automatically selecting plot kind

The kind keyword of the facet grid plot is quite important. It determines most of the aesthetics and the possible dimensionality that the to-be-visualized data may have.

However, in some scenarios, one would like to choose an appropriate plot kind.
While kind: None outsources the plot kind to xarray, this frequently leads to kind: hist being created, depending on which layout specifiers were given.

The determine_plot_kind() function used in facet_grid() uses the plot data’s dimensionality to select a plotting kind.
By default, the following mapping of data-dimensionality to plot kind is used:

1: "line",
2: "pcolormesh",
3: "pcolormesh",
4: "pcolormesh",
5: "pcolormesh",
"with_hue": "line", # used when `hue` is explicitly set
"with_x_and_y": "pcolormesh", # used when _both_ `x` and `y` were set
"dataset": "scatter", # used for xr.Dataset-like data
"fallback": "hist", # used when none of the above matches

Aside from the dimensionality as key, there are a few special cases that handle already-fixed layout encoding (hue / x and y); the case of xr.Dataset-like data; and a fallback option for all other dimensionalities or cases.
For details, see the docstring of determine_plot_kind().

Setting kind: auto becomes especially powerful in conjunction with Auto-encoding of plot layout.

Auto-encoding of plot layout

dantro also adds the auto_encoding feature to the facet grid plot, which automatically associates data dimensions with certain layout encoding specifiers (x, y, col, and others).
With this functionality, the facet grid plot can be used to visualize high-dimensional data regardless of the dimension names; the only relevant information is the dimensionality of the data.

The available encodings for the facet_grid() plot are:

In [1]: print(available_facet_grid_kinds)
 scatter : ('hue', 'col', 'row', 'frames')
 line : ('x', 'hue', 'col', 'row', 'frames')
 step : ('x', 'col', 'row', 'frames')
 contourf : ('x', 'y', 'col', 'row', 'frames')
 contour : ('x', 'y', 'col', 'row', 'frames')
 imshow : ('x', 'y', 'col', 'row', 'frames')
 pcolormesh : ('x', 'y', 'col', 'row', 'frames')
 hist : ('frames',)
 errorbars : ('x', 'hue', 'col', 'row', 'frames')
 scatter3d : ('hue', 'markersize', 'col', 'row', 'frames')

In combination with Automatically selecting plot kind, this further reduces the plot configuration arguments required to generate facet grid plots.

For further details, see determine_encoding().

Add custom plot kinds that support faceting

While the already-available plot kinds of the facet grid cover many use cases, there is still room for extension.
As part of the generic plot functions module, dantro provides the make_facet_grid_plot decorator that wraps the decorated function in such a way that it becomes facetable.

That means that after decoration:

	The function will support faceting in col, row and frames in addition to those dimensions handled within the decorated function.

	It will be registered with the generic facet_grid() function, such that it is available as kind.

	It will be integrated in such a way that it supports auto encoding.

The make_facet_grid_plot decorator wraps the functionality of xarray.plot.FacetGrid and makes it easy to add faceting support to plot functions.
It can be used if the following requirements are fulfilled:

	Works with a single xr.Dataset or xr.DataArray object as input

	Will only plot to the current axis and not create a figure

	It is desired to have the same kind of plot repeated over multiple axes, the plots differing only in the slice of data passed to them.

As an example, have a look at the implementation of the errorbars() plot function.

ColorManager integration

All facet grid plots in dantro integrate the ColorManager to parse the colormap-related plotting arguments cmap and norm.

This allows to specify colormap properties right from the plot configuration.
For instance, it can be used to specify a colormap of a certain name, including the over, under, and bad color values, and additionally specifying a normalization:

cmap:
 name: magma
 under: grey
 over: white
 bad: red
norm:
 name: LogNorm
vmin: 1
vmax: 10

[image: ColorManager output example]
For more examples and instructions on how to integrate the ColorManager, see the dedicated ColorManager page or the ColorManager docstring.

Warning

As colorbar creation is carried out by xarray.plot.FacetGrid [https://docs.xarray.dev/en/stable/generated/xarray.plot.FacetGrid.html#xarray.plot.FacetGrid], the ColorManager can not be used to define colorbar labels for facet grid plots!

multiplot(): Plot multiple functions on one axis

The multiplot() plotting function enables the consecutive application of multiple plot functions on the current axis generated and provided through the PlotHelper.

Plot functions can be specified in three ways:

	as a string that is used to map to the corresponding function

	by importing a callable on the fly

	or by directly passing a callable function

For plot function lookup by string, the following seaborn plot functions [https://seaborn.pydata.org/api.html] and some matplotlib functions are available:

Seaborn -
https://seaborn.pydata.org/api.html

Relational plots
"sns.scatterplot": _sns.scatterplot,
"sns.lineplot": _sns.lineplot,

Distribution plots
"sns.histplot": _sns.histplot,
"sns.kdeplot": _sns.kdeplot,
"sns.ecdfplot": _sns.ecdfplot,
"sns.rugplot": _sns.rugplot,

Categorical plots
"sns.stripplot": _sns.stripplot,
"sns.swarmplot": _sns.swarmplot,
"sns.boxplot": _sns.boxplot,
"sns.violinplot": _sns.violinplot,
"sns.boxenplot": _sns.boxenplot,
"sns.pointplot": _sns.pointplot,
"sns.barplot": _sns.barplot,
"sns.countplot": _sns.countplot,

Regression plots
"sns.regplot": _sns.regplot,
"sns.residplot": _sns.residplot,

Matrix plots
"sns.heatmap": _sns.heatmap,

Utility functions
"sns.despine": _sns.despine,

Matplotlib -
https://matplotlib.org/tutorials/introductory/sample_plots.html

Relational plots
"plt.fill": _plt.fill,
"plt.scatter": _plt.scatter,
"plt.plot": _plt.plot,
"plt.polar": _plt.polar,
"plt.loglog": _plt.loglog,
"plt.semilogx": _plt.fill,
"plt.semilogy": _plt.semilogy,
"plt.errorbar": _plt.errorbar,

Distribution plots
"plt.hist": _plt.hist,
"plt.hist2d": _plt.hist2d,

Categorical plots
"plt.bar": _plt.bar,
"plt.barh": _plt.barh,
"plt.pie": _plt.pie,
"plt.table": _plt.table,

Matrix plots
"plt.imshow": _plt.imshow,
"plt.pcolormesh": _plt.pcolormesh,

Vector plots
"plt.contour": _plt.contour,
"plt.quiver": _plt.quiver,
"plt.streamplot": _plt.streamplot,

To import a callable, specify a (module, name) tuple; this will use import_module_or_object() to carry out the import and traverse any modules.

You can also invoke any other function operating on a Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] object by importing or constructing a callable via the data transformation framework.

Let us look at some example configurations to illustrate the above features:

Minimal example
sns_lineplot_example:
 plot_func: multiplot
 to_plot:
 # Plot a seaborn.lineplot
 # As data use the previously DAG-tagged 'seaborn_data'.
 # Note that it is important to specify the data to use
 # otherwise sns.lineplot plots and shows nothing!
 - function: sns.lineplot
 data: !dag_result seaborn_data
 # Add further sns.lineplot-specific kwargs below...
 markers: true

 # Can add more function specifications here to plot on the same axes

An advanced example
sns_lineplot_and_more:
 plot_func: multiplot

 # Define some custom callable
 dag_options:
 define:
 my_custom_callable:
 - lambda: "lambda *, ratio, ax: ax.set_aspect(ratio)"

 to_plot:
 # Look up the callable from a dict
 - function: sns.lineplot
 data: !dag_result seaborn_data
 # Add further sns.lineplot-specific kwargs below...
 markers: true

 # Import a callable on the fly
 - function: [matplotlib, pyplot.plot]
 # plt.plot requires the x and y values to be passed as positional
 # arguments.
 args:
 - !dag_result plot_x
 - !dag_result plot_y
 # Add further plot-specific kwargs below...

 # Call the constructed plot function, passing the axis object along
 - function: !dag_result my_custom_callable
 pass_axis_object_as: ax
 ratio: 0.625

 # Can add more functions here, if desired

Hint

As can be seen in the above example, it is possible to pass an axis object to the function, if needed.
To do so, use the pass_axis_object_as argument to specify the name of the keyword argument the axis object should be passed on as.

Hint

The actual implementation is part of the PlotHelper interface, which also gives access to arbitrary function invocations on the current axis.
The corresponding helper function is named call (_hlpr_call()).

Use multiplot with multiple subplots

Generating plots with multiple subplots is also possible via the multiplot() function.
This is a two-step process:

	In the PlotHelper configuration, specify the desired subplots of the figure using setup_figure.

	In the multiplot() configuration, address each axis separately and specify which function calls should be made on it.

Example:

based_on:
 - .creator.pyplot
 - .plot.multiplot

 # use helpers for styling
 - .hlpr.limits.x.min_max
 - .hlpr.lines.h_zero

Select some example data
select:
 some_data: labelled/time_series

transform:
 # Compute mean and std. deviation over the space dimension
 - .mean: [!dag_tag some_data, [space]]
 tag: mean

 - .std: [!dag_tag some_data, [space]]
 tag: std

 # Explicitly extract coordinates, needed by plt.plot
 - .coords: [!dag_tag mean, time]
 tag: time_coords

Use PlotHelper to configure figure to have two subplots
helpers:
 setup_figure:
 ncols: 1
 nrows: 2
 sharex: true

 set_suptitle:
 title: Some Time Series (mean and std)

 set_labels:
 x: Time
 only_label_outer: true

Specify the multiplot calls on the upper and lower subplots
to_plot:
 [0, 0]:
 - function: plt.plot
 args:
 - !dag_result time_coords
 - !dag_result mean
 - function: [matplotlib.pyplot, ylabel]
 args: [mean]
 [0, 1]:
 - function: plt.plot
 args:
 - !dag_result time_coords
 - !dag_result std
 - function: [matplotlib.pyplot, ylabel]
 args: [std]

The resulting plot looks like this:

[image: Multiplot plot example with subplots and artificial time series data]

The ColorManager

The ColorManager can take care of setting up a colormap, a corresponding normalization, and assists in drawing colorbars.
Its aim is to make the matplotlib.colors [https://matplotlib.org/stable/api/colors_api.html#module-matplotlib.colors] module accessible via the configuration.

For instance, specifying a colormap, norm and vmin/vmax can be done like this:

cmap:
 name: magma
 under: grey
 over: white
 bad: red
norm:
 name: LogNorm
vmin: 1
vmax: 10

In the corresponding output plot, data points that go beyond vmax are shown in white, and those that cannot be represented with the custom LogNorm are shown as “bad” values in red:

[image: ColorManager output example]

	Integration

	YAML tags

	Examples

	Specifying colormap and vmin/vmax

	Extreme values

	Custom norm

	Segmented colormaps

	Labels and colors (shorthand syntax)

	Continuous colormaps

	Alpha values for extremes

	Seaborn color maps

	API Reference

	ColorManager.__init__

	ColorManager.create_cbar

	parse_cmap_and_norm_kwargs

Integration

In order to make full use of the ColorManager’s capabilities, it needs to be integrated in the following way:

	Depending on your use case, divert the cmap, norm, vmin, vmax and colorbar label arguments to initialize a ColorManager.

	Where you would typically use the cmap and norm arguments passed through, use the corresponding properties ColorManager.cmap and ColorManager.norm instead.

	Instead of creating the colorbar yourself, use the ColorManager.create_cbar() method, which knows about the custom colorbar labels.

This may look as follows:

from dantro.plot import ColorManager

def my_scatter_func(
 x,
 y,
 *,
 c,
 ax,
 cmap=None,
 norm=None,
 vmin: float = None,
 vmax: float = None,
 cbar_labels: Union[list, dict] = None,
 cbar_kwargs: dict = {},
 **scatter_kwargs,
):
 """This plot function illustrates ColorManager integration"""

 # Set up the ColorManager
 cm = ColorManager(
 cmap=cmap, norm=norm, vmin=vmin, vmax=vmax, labels=cbar_labels
)

 # Now plot, passing the corresponding cmap and norm arguments ...
 scatter = ax.scatter(
 x,
 y,
 c=c,
 cmap=cm.cmap,
 norm=cm.norm,
 **scatter_kwargs,
)

 # ... and let the ColorManager create the colorbar
 cbar = cm.create_cbar(
 scatter,
 **cbar_kwargs,
)

 return scatter, cbar

Note

If you are not in control of the colorbar — or are not using one — you can also use parse_cmap_and_norm_kwargs(), which will extract the relevant arguments to initialize a ColorManager and return the resolved colormap and norm object.

In that case, the labels argument will not have any effect.

YAML tags

Furthermore, YAML tags can be used to generate colormaps or norms in places where the ColorManager cannot be integrated but a corresponding matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap] object or norm object is accepted or even required:

cmap: !cmap # will create a matplotlib.colors.Colormap object
 continuous: true
 from_values:
 0: "#EC7070"
 0.5: "#EC9F7E"
 1: black
 bad: white
norm: !cmap_norm # will create a matplotlib.colors.Normalize object
 name: Normalize
 vmin: 0
 vmax: 10
 clip: true

Examples

The following examples use a YAML representation for the parameters.

Specifying colormap and vmin/vmax

Directly specifying a colormap by name and the boundaries for the norm (falling back to the default Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]):

cmap:
 name: viridis
 # ... can have more arguments here
vmin: 0
vmax: 10

[image: ColorManager output example]

Extreme values

Can also specify colormap extreme values and a custom norm:

cmap:
 name: magma
 under: grey
 over: white
 bad: red
norm:
 name: LogNorm
vmin: 1
vmax: 10

[image: ColorManager output example]
Note how the “bad” values are shown in red while values that go beyond vmax are shown in white.
The extend argument for ColorManager.create_cbar() can be used to control whether these colors are shown at the top or bottom of the colorbar.
By default, the method inspects whether extreme values are set in the colormap and shows them and selects the fitting visualization automatically.

Custom norm

The norm argument can be used to select a custom Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]-derived normalization class.
Arguments can simply be passed through.

Available norms are specified in NORMS.

cmap:
 name: coolwarm
 over: red
 under: blue
norm:
 name: TwoSlopeNorm
 vcenter: 0
vmin: -5
vmax: 10

[image: ColorManager output example]

Segmented colormaps

It is easy to specify a ListedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.ListedColormap.html#matplotlib.colors.ListedColormap] using the cmap.from_values argument; the keys of that dictionary specify the positions of the segments.

The segments can either be centered around the values specified as keys or be given explicitly as the left and right edges of the respective segments.

Inferred edges

When using scalar keys (0, 1, 4 here), the bin edges are inferred automatically:

cmap:
 from_values:
 0: r
 1: g
 4: b
 bad: w
 over: w
 under: w
labels:
 0: foo
 1: bar
 4: baz

[image: ColorManager output example]

Note

If using irregular distances between bins (as done above), the label position will not appear centered.
However, the label position can be adjusted separately via the keys of labels.

Custom bin edges

A segmented colormap with custom bin edges, achieved by passing the boundaries via 2-tuple-like keys:

cmap:
 from_values:
 [-.5, 0.5]: r
 [0.5, 1.5]: ~ # None → will use placeholder color
 [1.5, 4.5]: b
 placeholder_color: w # default: white

[image: ColorManager output example]

Note

If passing labels here as well, they would still need scalar keys for their position.

Labels and colors (shorthand syntax)

There is a shorthand syntax for specifying labels and the corresponding colors via a single mapping (see the cmap argument labels_and_colors below).
Here, the corresponding values are inferred from the size of the mapping and vmin and/or vmax.

There

Implicit syntax

cmap:
 first: green
 second: blue
 third: red
 fourth: orange

 # can also specify extremes here
 under: k
 over: w

[image: ColorManager output example]

Explicit syntax

To avoid name clashes between labels and valid colormap arguments (those specified in ColorManager._POSSIBLE_CMAP_KWARGS), a more explicit syntax can be used:

cmap:
 labels_and_colors:
 # can use restricted labels here
 name: green
 colors: blue
 reversed: red
 gamma: orange
 under: k
 over: w

[image: ColorManager output example]

Custom vmin/vmax

In cases where the inferred integer range of the labels should not start at zero, simply define vmin and/or vmax.

cmap:
 first: green
 second: blue
 third: red
 fourth: orange

 under: k
 over: w
vmin: 2
vmax: ~

[image: ColorManager output example]

Skipping values

If some values should not be associated with a color, they can be skipped:

cmap:
 first: green
 second: blue
 " ": ~
 fourth: orange
 " ": ~

 under: k
 over: w

[image: ColorManager output example]

Note

In order for the labels to not be shown at all, use spaces as the key of the labels_and_colors mapping.
Take care to use unique mapping keys, e.g. by using different numbers of spaces.

Continuous colormaps

A continous colormap with linearly interpolated colors (LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap]) can also easily be specified:

cmap:
 continuous: true
 from_values:
 0: '#EC7070'
 0.5: '#EC9F7E'
 1: black
 under: grey
 over: white
vmin: 0
vmax: 10

[image: ColorManager output example]

With boundaries

This can still be combined with the matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm]:

cmap:
 continuous: true
 from_values:
 0: "#EC7070"
 0.5: "#EC9F7E"
 1: black
 under: grey
 over: white
 bad: red
norm:
 name: BoundaryNorm
 ncolors: 256
 boundaries: [-2, 2, 6, 8, 9, 10]

[image: ColorManager output example]

Note

The matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm] does not include the upper boundary.

Alpha values for extremes

Specifying color and alpha for the extremes is also possible:

cmap:
 name: viridis
 under:
 color: blue
 alpha: 0.5
 over:
 color: red
 alpha: 0.5
 bad: darkred

[image: ColorManager output example]

Seaborn color maps

It is also possible to use seaborn colormaps, which opens up many new possibilities [https://seaborn.pydata.org/tutorial/color_palettes.html] to define colormaps.
These fall into three categories:

	Named colormaps like icefire that are available after seaborn was imported (which it is when the ColorManager is invoked).

	Color palettes defined via seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette].

	Divering colormaps constructed via seaborn.diverging_palette() [https://seaborn.pydata.org/generated/seaborn.diverging_palette.html#seaborn.diverging_palette].

The latter two use a prefix syntax for the name argument: To use those modes, use a name argument that starts with color_palette:: or diverging::, respectively, followed by the corresponding arguments.
More information and examples below.

Color palettes

cmap:
 name: color_palette::light:#69d
vmin: 0
vmax: 10

[image: ColorManager output example]
More examples:

color_palette::YlOrBr
color_palette::icefire
color_palette::icefire_r # reversed
color_palette::light:b # white -> blue
color_palette::dark:b # black -> blue
color_palette::light:#69d # custom color
color_palette::light:#69d_r # custom color reversed
color_palette::dark:salmon_r # named colormap reversed
color_palette::ch:s=-.2,r=.6 # cubehelix with parameters

Hint

You may have to put these prefixed strings into quotes to avoid YAML interpreting them as mappings.

Diverging palettes

By default, seaborn.diverging_palette() [https://seaborn.pydata.org/generated/seaborn.diverging_palette.html#seaborn.diverging_palette] does not offer the expanded string-based syntax that seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette] supports.
However, the ColorManager has that functionality.

cmap:
 name: diverging::250, 30, l=65, center=dark
 under: w
 over: w
vmin: -5
vmax: +5

[image: ColorManager output example]
More examples:

diverging::220,20
diverging::145,300,s=60
diverging::250, 30, l=65, center=dark

API Reference

Below, an excerpt from the ColorManager API is shown.

ColorManager.__init__

	
ColorManager.__init__(*, cmap: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]]] = None, norm: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]]] = None, labels: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, vmin: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, vmax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, discretized: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Initializes a ColorManager by building the colormap,
the norm, and the colorbar labels.

Refer to the dedicated documentation page for
examples and integration instructions.

	Parameters

	
	cmap (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]], optional) – The colormap specification.
If this is not already a matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]
instance, it will be parsed into a dict-like specification,
which has the options as shown below.

	If cmap is a string, it is turned into
dict(name=cmap).

	If cmap is a list (or tuple), it will be converted to
dict(from_values=cmap), creating a segmented colormap.
See below for more information.

In dict form, the following arguments are available:

	name (str, optional):
	Name of a registered matplotlib colormap or None to use a
default. For available colormap names, see
here [https://matplotlib.org/stable/gallery/color/colormap_reference.html].

Also supports seaborn colormaps. If the name starts
with the _SNS_COLOR_PALETTE_PREFIX string,
seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette] is used to generate the
colormap.
If starting with _SNS_DIVERGING_PALETTE_PREFIX,
seaborn.diverging_palette() [https://seaborn.pydata.org/generated/seaborn.diverging_palette.html#seaborn.diverging_palette] is invoked, using
argument specified as part of the name.

This opens many possibilities, as shown in the
seaborn documentation [https://seaborn.pydata.org/tutorial/color_palettes.html].
For example:

color_palette::YlOrBr
color_palette::icefire
color_palette::icefire_r # reversed
color_palette::light:b # white -> blue
color_palette::dark:b # black -> blue
color_palette::light:#69d # custom color
color_palette::light:#69d_r # ... reversed
color_palette::dark:salmon_r # named, reversed
color_palette::ch:s=-.2,r=.6 # cubehelix

diverging::220,20
diverging::145,300,s=60
diverging::250, 30, l=65, center=dark

Here, the ch:<key>=<val>,<key>=<val> syntax is used to
create a seaborn.cubehelix_palette() [https://seaborn.pydata.org/generated/seaborn.cubehelix_palette.html#seaborn.cubehelix_palette].
The same <arg>,<arg>,<key>=<val>,<key>=<val> syntax is
used for the diverging palette.

Note

When specifying these via YAML, make sure to put the
string into single or double quotes to avoid it being
interpreted as a YAML mapping.

	from_values (Union[dict, list], optional):
	Dict of colors keyed by bin-specifier. If given, name
is ignored and a discrete colormap is created from the list
of specified colors. The norm is then set to
matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm].

The bins can be specified either by bin-centers (Scalar) or
by bin-intervals (2-tuples). For the former, the deduced
bin-edges are assumed halfway between the bin-centers. For
the latter, the given intervals must be pairwise connected.
In both cases, the bins must monotonically increase.

If a list of colors is passed they are automatically
assigned to the bin-centers [0, 1, 2, ...], potentially
shifted depending on vmin and vmax. Inferring
these values is done in _infer_pos_map().

Alternatively, a continuous, linearly interpolated colormap
can be generated by setting the continuous flag, see
below. This will construct a
LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap].
In such a case, keys in from_values can only be scalar,
bin intervals cannot be specified.

	continuous (bool, optional):
	If True, will interpret the from_values data as
specifying points between which a linear interpolation is
carried out. Will create a
LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap].

	under (Union[str, dict], optional):
	Passed on to
set_under() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_under]

	over (Union[str, dict], optional):
	Passed on to
set_over() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_over]

	bad (Union[str, dict], optional):
	Passed on to
set_bad() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_bad]

	placeholder_color (str, optional):
	None values in from_values are replaced with this
color (default: white).

	reversed (bool, optional):
	If True, will reverse the colormap.

	labels_and_colors (dict, optional):
	This is a shorthand syntax for specifying colorbar labels
and colors at the same time.
Keys refer to labels, values to colors.
The label positions and bounds are inferred using
_infer_pos_map() and are affected by vmin and
vmax. These may also be given implicitly via
**kwargs (see below), but not at the same time!

Effectively, the mapping is unpacked into two parts:
The keys are used to specify the values of the labels
dict (on the top-level); the values are used to specify
the values of the cmap.from_values dict (see above).
The keys are inferred from the length of the sequence and
vmin and vmax, expecting to map to an integer
data positions.

Example:

cmap:
 empty: darkkhaki # -> 0
 susceptible: forestgreen # -> 1
 exposed: darkorange # ...
 infected: firebrick
 recovered: slategray
 deceased: black
 source: maroon
 inert: moccasin # -> 7

 # can still set extremes here (should not appear)
 under: red
 over: red

	**kwargs (optional):
	Depending on the argument names, these are either passed
to colormap instantiation or are used to specify the
labels_and_colors mapping. For the latter, labels may
not be named after arguments that are relevant for
colormap initialization
(_POSSIBLE_CMAP_KWARGS).

	norm (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]], optional) – The norm that is applied for the color-mapping. If it is a
string, the matching norm in matplotlib.colors [https://matplotlib.org/stable/api/colors_api.html#module-matplotlib.colors]
is created with default values.
If it is a dict, the name entry specifies the norm and all
further entries are passed to its constructor.
Overwritten if a discrete colormap is specified via
cmap.from_values.

	labels (Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – Colorbar
tick-labels keyed by tick position. If a list of labels is
passed they are automatically assigned to the positions
[0, 1, 2, ...] (if no vmin and vmax are given) or
[vmin, vmin + 1, ..., vmax] otherwise.

	vmin (float [https://docs.python.org/3/library/functions.html#float], optional) – The lower bound of the color-mapping.
Not passed to matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm], which
does not support it.
If given, this argument in combination with vmax needs to
define an integer range that has the same number of values
as needed for a colormap constructed from from_values or
via the label -> color mapping.
If discretized is set, this value will be set to
ceil(vmin) - 0.5.

	vmax (float [https://docs.python.org/3/library/functions.html#float], optional) – The upper bound of the color-mapping.
Not passed to matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm], which
does not support it.
If given, this argument in combination with vmin needs to
define an integer range that has the same number of values
as needed for a colormap constructed from from_values or
via the label -> color mapping.
If discretized is set, this value will be set to
floor(vmax) + 0.5.

	discretized (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, assumes that the data this
colormap is to represent only has integer values and makes a
number of changes to improve the overall visualization.
For instance, if True, the vmin and vmax values
will be set to the appropriate half-integer such that tick
positions are centered within the corresponding range.
If None (default), will do this automatically if a colormap
is constructed via from_values or via label -> color
mapping.

ColorManager.create_cbar

	
ColorManager.create_cbar(mappable: ScalarMappable [https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ScalarMappable], *, fig: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]] = None, ax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]] = None, label: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, label_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, tick_params: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, extend: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', **cbar_kwargs) → Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar]

	Creates a colorbar of a given mappable

	Parameters

	
	mappable (ScalarMappable [https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ScalarMappable]) – The mappable that is to be
described by the colorbar.

	fig (Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure], optional) – The figure; if not
given, will use the current figure as determined by
gcf() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf].

	ax (Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes], optional) – The axes; if not given, will
use the one given by matplotlib.figure.Figure.gca() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.gca].

	label (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A label for the colorbar

	label_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional parameters passed to
matplotlib.colorbar.Colorbar.set_label() [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar.set_label]

	tick_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Set colorbar tick parameters via the
matplotlib.axes.Axes.tick_params() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html#matplotlib.axes.Axes.tick_params] method of the
matplotlib.colorbar.Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar] axes.

	extend (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Whether to extend the colorbar axis to show
the under and over values. If auto (default), will
inspect whether the colormap has these values set and decide
accordingly. Can also be set manually, possible values being
neither, min, max, and both.

	**cbar_kwargs – Passed on to
matplotlib.figure.Figure.colorbar() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar]

	Returns

	The created colorbar object

	Return type

	Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar]

parse_cmap_and_norm_kwargs

	
parse_cmap_and_norm_kwargs(*, _key_map: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, use_color_manager: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kws) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A function that parses colormap-related keyword arguments and passes
them through the ColorManager, making its functionality
available in places that would otherwise not be able to use the expanded
syntax of the color manager.

Note

The resulting dict will only have the cmap and cbar kwargs
(or their mapped equivalents) set from the color manager, all other
arguments are simply passed through.

In particular, this means that the labels feature of the color
manager is not supported, because this function has no ability to
set the colorbar.

	Parameters

	
	_key_map (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If custom keyword argument keys are
expected as output, e.g. hue_cmap instead of cmap, set the
values to these custom names: {"cmap": "hue_cmap"}.
Expected keys are cmap, norm, vmin, vmax. If not
set or partially not set, will use defaults.

	use_color_manager (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will simply pass through

	**kws – Keyword arguments to parse

	Returns

	The updated keyword arguments with cmap and norm (or
equivalent keys according to _key_map).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Plotting FAQs

This page gathers frequently asked questions regarding the dantro plotting interface.

	General PlotManager FAQs

	Can I create plots in a specific directory?

	How can I specify a file extension?

	Can I allow plots to be overwritten instead of raising an error?

	Can plots be skipped?

	PlotHelper FAQs

	Can I assign a custom figure to the PlotHelper?

	Can I let the plot function decide whether to perform an animation?

Aside from these FAQs, make sure to have a look at other plotting-related documentation pages.

Note

If you would like to add a question here, we are happy about contributions!
Please visit the project page [https://gitlab.com/utopia-project/dantro] to open an issue or get more information about contributing.

General PlotManager FAQs

Can I create plots in a specific directory?

Yes.

To write plots to a custom output directory (other than the associated output directory of the PlotManager), simply specify the out_dir argument in the plot configuration.

The file extension of the plot can also be specified there, using the file_ext key.
Example:

my_plot:
 out_dir: ~/my/custom/output/directory

 # ... the rest of the plot configuration

Note

You can only specify a directory here, not a full path; the full file path will be generated by the plot manager by adding the name of the plot and potentially existing sweep configurations to it.

If a relative path is given for out_dir, it will be relative to the output directory of the associated DataManager.

How can I specify a file extension?

The file extension used in generating the output path can be adjusted for all plots associated with a plot creator or for a single plot, using its plot configuration.

To set a default extension, use the default_ext argument to BasePlotCreator or derived classes.
To specify it for a single plot, use the file_ext argument, directly in its plot configuration:

my_plot:
 file_ext: pdf

 # ... the rest of the plot configuration

Also have a look at Plot Configuration Reference.

Can I allow plots to be overwritten instead of raising an error?

Yes.

Follow these steps to achieve overwriting of existing plot output:

	Tell the plot creator that it should not raise an error if a file already exists at the generated output path:

	Pass exist_ok=True in the plot configuration

	Pass exist_ok=True to the plot creator during initialization

Note

If you always desire this behavior for a specific plot creator, set the OUT_PATH_EXIST_OK class variable to True.
That variable defines the default behavior.
It is overwritten by the exist_ok argument passed during initialization of a BasePlotCreator (or derived creator) and by the value given in the plot configuration.

	Tell the plot manager to overwrite existing plot configuration files that are stored alongside each plot; otherwise, this would also create conflict.
To do so, pass cfg_exists_action='overwrite' during the initialization of the PlotManager.
To suppress a warning, use overwrite_nowarn.

Can plots be skipped?

Yes. See Skipping Plots for more information.

PlotHelper FAQs

Can I assign a custom figure to the PlotHelper?

Yes.

When using the PlotHelper, it automatically sets up a figure instance and an axis initially, even before the plot function is called.
However, they can be replaced using the attach_figure_and_axes() method.

Can I let the plot function decide whether to perform an animation?

Yes. See Dynamically entering/exiting animation mode for more information.

Example Plots

This page showcases plot configurations and the resulting output.

Table of Contents

	Errorbands plot using meta-operations

	3D scatter plot

	Multiplot with subplots

Further reading:

	The PlotManager

	Plot Creators

	Base Plot Configuration Pool

	Plot Data Selection

	Data Operations Reference

How to include the given examples into your plots

All plot configurations shown here are represented using YAML, which is the most convenient.
Note that the examples omit the top-level of the plots configuration file; if you want to use the plots in such a way, include the shown examples like this:

my_plot:
 # ... content of the YAML examples you see here ...

By the way: All plots on this page are tested as part of the dantro test suite and are generated dynamically.

Todo

Describe how to generate the test data.

Errorbands plot using meta-operations

This is similar to an example in the xarray documentation [https://docs.xarray.dev/en/stable/examples/area_weighted_temperature.html], showing averaged air temperatures over time.

Using the dantro base plots config, this example embeds pre-defined meta-operations which are then used to compute the mean and standard deviation of the example data.
In addition, a rolling mean is applied to smoothe out the data, and a coordinate dimension is transformed such that matplotlib can plot label ticks from it.

[image: Errorbars plot example with air temperature data]

Plot configuration

based_on:
 # select the creator and use the errorbands plot function
 - .creator.pyplot
 - .plot.facet_grid.errorbands

 # include some meta operations
 - .dag.meta_ops.compute_mean_and_stddev
 - .dag.meta_ops.rolling
 - .dag.meta_ops.transform.coords.date2num

 # call some pre-defined helpers
 - .hlpr.ticks.x.date
 - .hlpr.autofmt_xdate
 - .hlpr.limits.x.min_max

 # always create a DAG visualization
 - .dag.vis.defaults
 - .dag.vis.always

select:
 air_temps:
 path: xr_tutorial/arrays/air_temperature
 transform:
 - .squeeze_with_drop

 # for matplotlib to accept this, need to transform the time coords
 - .transform.coords.date2num: [!dag_prev , time]

transform:
 # Compute the mean and standard deviation using included meta-operation
 - compute_mean_and_stddev: [!dag_tag air_temps, [lat, lon]]

 # Apply a rolling mean over 10 data points
 - rolling.mean: [!dag_prev , {time: 10}]
 tag: data

Specify which data variable to plot as line and which as errorbands
x: time
y: mean
yerr: stddev

Pretty it up a bit using helpers
helpers:
 set_labels:
 x: Time
 y: Temperature [K]
 set_title:
 title: Mean Air Temperature

DAG Visualization

The corresponding DAG visualization looks like this:

[image: DAG Visualization for errorbars example]

3D scatter plot

Here, a 3D random walk is visualized using the scatter3d() plot, accessible via the facet grid interface.

[image: 3D scatter plot example of a random walk]

Plot configuration

based_on:
 # select the creator and use the errorbands plot function
 - .creator.pyplot
 - .plot.facet_grid.scatter3d

select:
 data: labelled/random_walk_dset

Specify which data variable to use for which representation mode
x: x
y: y
z: z
hue: time
markersize: speed

Pretty it up a bit
cmap: cividis

cbar_kwargs:
 label: time
 fraction: 0.05
 shrink: 0.5

Multiplot with subplots

This example showcases the multiplot function and how to add different content on individual subplots.
Furthermore, it uses the import functionality of the plot function to call matplotlib.pyplot.ylabel() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.ylabel.html#matplotlib.pyplot.ylabel] on the subplots.

[image: Multiplot plot example with subplots and artificial time series data]

Plot configuration

based_on:
 - .creator.pyplot
 - .plot.multiplot

 # use helpers for styling
 - .hlpr.limits.x.min_max
 - .hlpr.lines.h_zero

Select some example data
select:
 some_data: labelled/time_series

transform:
 # Compute mean and std. deviation over the space dimension
 - .mean: [!dag_tag some_data, [space]]
 tag: mean

 - .std: [!dag_tag some_data, [space]]
 tag: std

 # Explicitly extract coordinates, needed by plt.plot
 - .coords: [!dag_tag mean, time]
 tag: time_coords

Use PlotHelper to configure figure to have two subplots
helpers:
 setup_figure:
 ncols: 1
 nrows: 2
 sharex: true

 set_suptitle:
 title: Some Time Series (mean and std)

 set_labels:
 x: Time
 only_label_outer: true

Specify the multiplot calls on the upper and lower subplots
to_plot:
 [0, 0]:
 - function: plt.plot
 args:
 - !dag_result time_coords
 - !dag_result mean
 - function: [matplotlib.pyplot, ylabel]
 args: [mean]
 [0, 1]:
 - function: plt.plot
 args:
 - !dag_result time_coords
 - !dag_result std
 - function: [matplotlib.pyplot, ylabel]
 args: [std]

dantro package

dantro provides a uniform interface for hierarchically structured
and semantically heterogeneous data.
It is built around three main features:

	data handling: loading heterogeneous data into a tree-like data
structure, providing a uniform interface to it

	data transformation: performing arbitrary operations on the data, if
necessary using lazy evaluation

	data visualization: creating a visual representation of the processed
data

Together, these stages constitute a data processing pipeline:
an automated sequence of predefined, configurable operations.

See the user manual for more information.

	
__version__ = '0.19.5'

	Package version

Subpackages

	dantro.containers package
	Submodules

	dantro.containers._registry module

	dantro.containers.general module

	dantro.containers.link module

	dantro.containers.numeric module

	dantro.containers.path module

	dantro.containers.xr module

	dantro.data_loaders package
	Submodules

	dantro.data_loaders._registry module

	dantro.data_loaders.fspath module

	dantro.data_loaders.hdf5 module

	dantro.data_loaders.numpy module

	dantro.data_loaders.pandas module

	dantro.data_loaders.pickle module

	dantro.data_loaders.text module

	dantro.data_loaders.xarray module

	dantro.data_loaders.yaml module

	dantro.data_ops package
	Submodules

	dantro.data_ops._base_ops module

	dantro.data_ops.apply module

	dantro.data_ops.arr_ops module

	dantro.data_ops.ctrl_ops module

	dantro.data_ops.db module

	dantro.data_ops.db_tools module

	dantro.data_ops.expr_ops module

	dantro.data_ops.hooks module

	dantro.groups package
	Submodules

	dantro.groups._registry module

	dantro.groups.dirpath module

	dantro.groups.graph module

	dantro.groups.labelled module

	dantro.groups.ordered module

	dantro.groups.psp module

	dantro.groups.time_series module

	dantro.mixins package
	Submodules

	dantro.mixins.base module

	dantro.mixins.general module

	dantro.mixins.indexing module

	dantro.mixins.numeric module

	dantro.mixins.proxy_support module

	dantro.plot package
	Subpackages
	dantro.plot.creators package
	Submodules

	dantro.plot.creators.base module

	dantro.plot.creators.psp module

	dantro.plot.creators.pyplot module

	dantro.plot.funcs package
	Submodules

	dantro.plot.funcs._multiplot module

	dantro.plot.funcs._utils module

	dantro.plot.funcs.basic module

	dantro.plot.funcs.generic module

	dantro.plot.funcs.graph module

	dantro.plot.funcs.multiplot module

	dantro.plot.utils package
	Submodules

	dantro.plot.utils._file_writer module

	dantro.plot.utils.color_mngr module

	dantro.plot.utils.mpl module

	dantro.plot.utils.plot_func module

	Submodules

	dantro.plot._cfg module

	dantro.plot.plot_helper module

	dantro.proxy package
	Submodules

	dantro.proxy.hdf5 module

	dantro.utils package
	Submodules

	dantro.utils.coords module

	dantro.utils.link module

	dantro.utils.nx module

	dantro.utils.ordereddict module

Submodules

dantro._copy module

Custom, optimized copying functions used thoughout dantro

	
_shallowcopy(x)

	An alias for a shallow copy function used throughout dantro, currently
pointing to copy.copy() [https://docs.python.org/3/library/copy.html#copy.copy].

	
_deepcopy(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	A pickle-based deep-copy overload, that uses copy.deepcopy() [https://docs.python.org/3/library/copy.html#copy.deepcopy]
only as a fallback option if serialization was not possible.

Calls pickle.loads() [https://docs.python.org/3/library/pickle.html#pickle.loads] on the output of pickle.dumps() [https://docs.python.org/3/library/pickle.html#pickle.dumps] of
the given object.

The pickling approach being based on a C implementation, this can easily
be many times faster than the pure-Python-based copy.deepcopy() [https://docs.python.org/3/library/copy.html#copy.deepcopy].

dantro._dag_utils module

Private low-level helper classes and functions used in dantro.dag.

For more information, see data transformation framework.

	
class Placeholder(data: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A generic placeholder class for use in the
data transformation framework.

Objects of this class or derived classes are yaml-representable and thus
hashable after a parent object created a YAML representation. In addition,
the __hash__() method can be used to generate a “hash” that is
implemented simply via the string representation of this object.

There are a number of derived classes that play a role as providing
references within the TransformationDAG:
DAGReference,
DAGTag, and
DAGNode.

In the context of meta operations, there are
placeholder classes for positional and keyword arguments:
PositionalArgument and
KeywordArgument.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'payload'

	How to refer to the payload in the __str__ method

	
__init__(data: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Initialize a Placeholder by storing its payload

	
_data

	

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
property data: Any

	The payload of the placeholder

	
yaml_tag = '!dag_placeholder'

	

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
class ResultPlaceholder(data: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: dantro._dag_utils.Placeholder

A placeholder class for a data transformation result.

This is used in the plotting framework to
inject data transformation results into plot arguments.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'result_tag'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!dag_result'

	

	
property result_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of the transformation result this is a placeholder for

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
__init__(data: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Initialize a Placeholder by storing its payload

	
_data

	

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property data: Any

	The payload of the placeholder

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
resolve_placeholders(d: dict, *, dag: TransformationDAG, Cls: type = <class 'dantro._dag_utils.ResultPlaceholder'>, **compute_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Recursively replaces placeholder objects throughout the given dict.

Computes TransformationDAG results and replaces
the placeholder objects with entries from the results dict, thereby
making it possible to compute configuration values using results of the
data transformation framework <dag_framework>, for example as done in
the plotting framework; see Using data transformation results in the plot configuration.

Warning

While this function has a return value, it resolves the placeholders
in-place, such that the given d will be mutated even if the return
value is ignored on the calling site.

	Parameters

	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The object to replace placeholders in. Will recursively walk
through all dict- and list-like objects to find placeholders.

	dag (TransformationDAG) – The data transformation tree to
resolve the placeholders’ results from.

	Cls (type [https://docs.python.org/3/library/functions.html#type], optional) – The expected type of the placeholders.

	**compute_kwargs – Passed on to
compute().

	
class PlaceholderWithFallback(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], *args)

	Bases: dantro._dag_utils.Placeholder

A class expanding Placeholder that adds the ability to
read and store a fallback value.

	
_fallback

	

	
_has_fallback

	

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Representation that includes the fallback value, if there is one.

	
property fallback: Any

	Returns the fallback value

	
property has_fallback: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether there was a fallback value provided

	
classmethod from_yaml(constructor, node)

	Constructs a placeholder object from a YAML node.

For a sequence node, will interpret it as (data, fallback).
With a scalar node, will not have a fallback.

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, creating a sequence
representation in case a fallback value was defined.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'payload'

	How to refer to the payload in the __str__ method

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
_data

	

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property data: Any

	The payload of the placeholder

	
yaml_tag = '!dag_placeholder'

	

	
class PositionalArgument(pos: int [https://docs.python.org/3/library/functions.html#int], *args)

	Bases: dantro._dag_utils.PlaceholderWithFallback

A PositionalArgument is a placeholder that holds as payload a positional
argument’s position. This is used, e.g., for meta-operation specification.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'position'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!arg'

	

	
__init__(pos: int [https://docs.python.org/3/library/functions.html#int], *args)

	Initialize from an integer, also accepting int-convertibles

	
property position: int [https://docs.python.org/3/library/functions.html#int]

	

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Representation that includes the fallback value, if there is one.

	
_data

	

	
_fallback

	

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
_has_fallback

	

	
property data: Any

	The payload of the placeholder

	
property fallback: Any

	Returns the fallback value

	
classmethod from_yaml(constructor, node)

	Constructs a placeholder object from a YAML node.

For a sequence node, will interpret it as (data, fallback).
With a scalar node, will not have a fallback.

	
property has_fallback: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether there was a fallback value provided

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, creating a sequence
representation in case a fallback value was defined.

	
class KeywordArgument(name: str [https://docs.python.org/3/library/stdtypes.html#str], *args)

	Bases: dantro._dag_utils.PlaceholderWithFallback

A KeywordArgument is a placeholder that holds as payload the name of a
keyword argument. This is used, e.g., for meta-operation specification.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'name'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!kwarg'

	

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], *args)

	Initialize by storing the keyword argument name

	
property name: int [https://docs.python.org/3/library/functions.html#int]

	

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Representation that includes the fallback value, if there is one.

	
_data

	

	
_fallback

	

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
_has_fallback

	

	
property data: Any

	The payload of the placeholder

	
property fallback: Any

	Returns the fallback value

	
classmethod from_yaml(constructor, node)

	Constructs a placeholder object from a YAML node.

For a sequence node, will interpret it as (data, fallback).
With a scalar node, will not have a fallback.

	
property has_fallback: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether there was a fallback value provided

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, creating a sequence
representation in case a fallback value was defined.

	
class DAGReference(ref: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: dantro._dag_utils.Placeholder

The DAGReference class is the base class of all DAG reference objects.
It extends the generic Placeholder class with the ability to resolve
references within a TransformationDAG.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'hash'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!dag_ref'

	

	
__init__(ref: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize a DAGReference object from a hash.

	
_data

	

	
property ref: str [https://docs.python.org/3/library/stdtypes.html#str]

	The associated reference of this object

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
_resolve_ref(*, dag: TransformationDAG) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the hash reference; for the base class, the data is already
the hash reference, so no DAG is needed. Derived classes _might_ need
the DAG to resolve their reference hash.

	
convert_to_ref(*, dag: TransformationDAG) → DAGReference

	Create a new object that is a hash ref to the same object this
tag refers to.

	
resolve_object(*, dag: TransformationDAG) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Resolve the object by looking up the reference in the DAG’s object
database.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
property data: Any

	The payload of the placeholder

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
class DAGTag(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: dantro._dag_utils.DAGReference

A DAGTag object stores a name of a tag, which serves as a named
reference to some object in the DAG.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'tag'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!dag_tag'

	

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize a DAGTag object, storing the specified field name

	
_data

	

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of the tag within the DAG that this object references

	
_resolve_ref(*, dag: TransformationDAG) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the hash reference by looking up the tag in the DAG

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
convert_to_ref(*, dag: TransformationDAG) → DAGReference

	Create a new object that is a hash ref to the same object this
tag refers to.

	
property data: Any

	The payload of the placeholder

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
property ref: str [https://docs.python.org/3/library/stdtypes.html#str]

	The associated reference of this object

	
resolve_object(*, dag: TransformationDAG) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Resolve the object by looking up the reference in the DAG’s object
database.

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
class DAGMetaOperationTag(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: dantro._dag_utils.DAGTag

A DAGMetaOperationTag stores a name of a tag, just as DAGTag, but can
only be used inside a meta-operation. When resolving this tag’s reference,
the target is looked up from the stack of the TransformationDAG.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'tag'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!mop_tag'

	

	
SPLIT_STR: str [https://docs.python.org/3/library/stdtypes.html#str] = '::'

	The string by which to split off the meta-operation name from the
fully qualified tag name.

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize the DAGMetaOperationTag object.

The name needs to be of the <meta-operation name>::<tag name>
pattern and thereby include information on the name of the
meta-operation this tag is used in.

	
_data

	

	
_resolve_ref(*, dag: TransformationDAG) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the hash reference by looking it up in the reference stacks
of the specified TransformationDAG. The last entry always refers to the
currently active meta-operation.

	
classmethod make_name(meta_operation: str [https://docs.python.org/3/library/stdtypes.html#str], *, tag: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a meta-operation name and a tag name, generates the name of
this meta-operation tag.

	
classmethod from_names(meta_operation: str [https://docs.python.org/3/library/stdtypes.html#str], *, tag: str [https://docs.python.org/3/library/stdtypes.html#str]) → DAGMetaOperationTag

	Generates a DAGMetaOperationTag using the names of a meta-operation
and the name of a tag.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
convert_to_ref(*, dag: TransformationDAG) → DAGReference

	Create a new object that is a hash ref to the same object this
tag refers to.

	
property data: Any

	The payload of the placeholder

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of the tag within the DAG that this object references

	
property ref: str [https://docs.python.org/3/library/stdtypes.html#str]

	The associated reference of this object

	
resolve_object(*, dag: TransformationDAG) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Resolve the object by looking up the reference in the DAG’s object
database.

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
class DAGNode(idx: int [https://docs.python.org/3/library/functions.html#int])

	Bases: dantro._dag_utils.DAGReference

A DAGNode is a reference by the index within the DAG’s node list.

	
PAYLOAD_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'node ID'

	How to refer to the payload in the __str__ method

	
yaml_tag = '!dag_node'

	

	
__init__(idx: int [https://docs.python.org/3/library/functions.html#int])

	Initialize a DAGNode object with a node index.

	Parameters

	idx (int [https://docs.python.org/3/library/functions.html#int]) – The idx value to set this reference to. Can also be a
negative value, in which case the node list is traversed from
the back.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On invalid type (not int-convertible)

	
_data

	

	
property idx: int [https://docs.python.org/3/library/functions.html#int]

	The idx to the referenced node within the DAG’s node list

	
_resolve_ref(*, dag: TransformationDAG) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the hash reference by looking up the node index in the DAG

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Only objects with exactly the same type and data are regarded as
equal; specifically, this makes instances of subclasses always unequal
to instances of this base class.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Creates a hash by invoking hash(repr(self))

	
_format_payload() → str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
convert_to_ref(*, dag: TransformationDAG) → DAGReference

	Create a new object that is a hash ref to the same object this
tag refers to.

	
property data: Any

	The payload of the placeholder

	
classmethod from_yaml(constructor, node)

	Construct a Placeholder from a scalar YAML node

	
property ref: str [https://docs.python.org/3/library/stdtypes.html#str]

	The associated reference of this object

	
resolve_object(*, dag: TransformationDAG) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Resolve the object by looking up the reference in the DAG’s object
database.

	
classmethod to_yaml(representer, node)

	Create a YAML representation of a Placeholder, carrying only the
_data attribute over…

As YAML expects scalar data to be str-like, a type cast is done. The
subclasses that rely on certain argument types should take care that
their __init__ method can parse arguments that are str-like.

	
class DAGObjects

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An objects database for the DAG framework.

It uses a flat dict containing (hash, object ref) pairs. The interface is
slightly restricted compared to a regular dict; especially, item deletion
is not made available.

Objects are added to the database via the add_object method. They need
to have a hashstr property, which returns a hash string
deterministically representing the object; note that this is not
equivalent to the Python builtin hash() [https://docs.python.org/3/library/functions.html#hash] function which invokes the
magic __hash__ method of an object.

	
__init__()

	Initialize an empty objects database

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A human-readable string representation of the object database

	
add_object(obj, *, custom_hash: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Add an object to the object database, storing it under its hash.

Note that the object cannot be just any object that is hashable but it
needs to return a string-based hash via the hashstr property. This
is a dantro DAG framework-internal interface.

Also note that the object will NOT be added if an object with the same
hash is already present. The object itself is of no importance, only
the returned hash is.

	Parameters

	
	obj – Some object that has the hashstr property, i.e. is
hashable as required by the DAG interface

	custom_hash (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A custom hash to use instead of the
hash extracted from obj. Can only be given when obj
does not have a hashstr property.

	Returns

	
	The hash string of the given object. If a custom hash string
	was given, it is also the return value

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – When attempting to pass custom_hash while obj
 has a hashstr property

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the given custom_hash already exists.

	
__getitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → object [https://docs.python.org/3/library/functions.html#object]

	Return the object associated with the given hash

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the number of objects in the objects database

	
__contains__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given hash refers to an object in this database

	
keys()

	

	
values()

	

	
items()

	

	
parse_dag_minimal_syntax(params: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], *, with_previous_result: bool [https://docs.python.org/3/library/functions.html#bool] = True) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses the minimal syntax parameters, effectively translating a string-
like argument to a dict with the string specified as the operation key.

	
parse_dag_syntax(*, operation: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, tag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_compute: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, with_previous_result: bool [https://docs.python.org/3/library/functions.html#bool] = False, salt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, memory_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, file_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, ignore_hooks: bool [https://docs.python.org/3/library/functions.html#bool] = False, allow_failure: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, fallback: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None, context: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **ops) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Given the parameters of a transform operation, possibly in a shorthand
notation, returns a dict with normalized content by expanding the
shorthand notation. The return value is then suited to initialize a
Transformation object.

	Keys that will always be available in the resulting dict:
	operation, args, kwargs, tag.

	Optionally available keys:
	salt, file_cache, allow_failure, fallback, context.

	Parameters

	
	operation (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which operation to carry out; can only be
specified if there is no ops argument.

	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Positional arguments for the operation; can
only be specified if there is no ops argument.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments for the operation; can only
be specified if there is no ops argument.

	tag (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The tag to attach to this transformation

	force_compute (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to force computation for this
node.

	with_previous_result (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the result of the
previous transformation is to be used as first positional argument
of this transformation.

	salt (int [https://docs.python.org/3/library/functions.html#int], optional) – A salt to the Transformation object, thereby
changing its hash.

	file_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – File cache parameters

	ignore_hooks (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, there will be no lookup in the
operation hooks. See DAG Syntax Operation Hooks for more info.

	allow_failure (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Whether this Transformation
allows failure during computation. See Error Handling.

	fallback (Any, optional) – The fallback value to use in case of failure.

	context (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Context information, which may be a dict
containing any form of data and which is carried through to the
context attribute.

	**ops – The operation that is to be carried out. May contain one and
only one operation where the key refers to the name of the
operation and the value refers to positional or keyword arguments,
depending on type.

	Returns

	
	The normalized dict of transform parameters, suitable for
	initializing a Transformation object.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For invalid notation, e.g. unambiguous specification of
 arguments or the operation.

dantro._hash module

This module implements a deterministic hash function to use within dantro.

It is mainly used for all things related to the TransformationDAG.

	
_hash(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a deterministic hash of the given string.

This uses the hashlib.md5 algorithm which returns a hexadecimal digest of
length 32.

Note

This hash is meant to be used as a checksum, not for security.

	Parameters

	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to create the hash of

	Returns

	The 32 character hexadecimal md5 hash digest

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

dantro._import_tools module

Tools for module importing, e.g. lazy imports.

	
class added_sys_path(path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A sys.path [https://docs.python.org/3/library/sys.html#sys.path] context manager temporarily adding a path and
removing it again upon exiting.
If the given path already exists in :py:data`sys.path`, it is neither added
nor removed and :py:data`sys.path` remains unchanged.

Todo

Expand to allow multiple paths being added

	
__init__(path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize the context manager.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to add to sys.path [https://docs.python.org/3/library/sys.html#sys.path].

	
class temporary_sys_modules(*, reset_only_on_fail: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A context manager for the sys.modules [https://docs.python.org/3/library/sys.html#sys.modules] cache, ensuring that it
is in the same state after exiting as it was before entering the context.

Note

This works solely on module names, not on the module objects! If a
module object itself is overwritten, this context manager is not
able to discern that as long as the key does not change.

	
__init__(*, reset_only_on_fail: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Set up the context manager for a temporary sys.modules [https://docs.python.org/3/library/sys.html#sys.modules]
cache.

	Parameters

	reset_only_on_fail (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will reset the cache
only in case the context is exited with an exception.

	
get_from_module(mod: module, *, name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Retrieves an attribute from a module, if necessary traversing along the
module string.

	Parameters

	
	mod (ModuleType) – Module to start looking at

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The .-separated module string leading to the desired
object.

	
import_module_or_object(module: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, package: str [https://docs.python.org/3/library/stdtypes.html#str] = 'dantro') → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Imports a module or an object using the specified module string and the
object name. Uses importlib.import_module() [https://docs.python.org/3/library/importlib.html#importlib.import_module] to retrieve the module
and then uses get_from_module() for getting
the name from that module (if given).

	Parameters

	
	module (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A module string, e.g. numpy.random. If
this is not given, it will import from the :py:mod`builtins`
module. If this is a relative module string, will resolve starting
from package.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the object to retrieve from the
chosen module and return. This may also be a dot-separated sequence
of attribute names which can be used to traverse along attributes,
which uses get_from_module().

	package (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Where to import from if module was a
relative module string, e.g. .data_mngr, which would lead to
resolving the module from <package><module>.

	Returns

	
	The chosen module or object, i.e. the object found at
	<module>.<name>

	Return type

	Any

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – In cases where part of the name argument could not
 be resolved due to a bad attribute name.

	
import_name(modstr: str [https://docs.python.org/3/library/stdtypes.html#str])

	Given a module string, import a name, treating the last segment of the
module string as the name.

Note

If the last segment of modstr is not the name, use
import_module_or_object() instead of
this function.

	Parameters

	modstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – A module string, e.g. numpy.random.randint, where
randint will be the name to import.

	
import_module_from_path(*, mod_path: str [https://docs.python.org/3/library/stdtypes.html#str], mod_str: str [https://docs.python.org/3/library/stdtypes.html#str], debug: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], module]

	Helper function to import a module that is importable only when adding
the module’s parent directory to sys.path [https://docs.python.org/3/library/sys.html#sys.path].

Note

The mod_path directory needs to contain an __init__.py file.
If that is not the case, you cannot use this function, because the
directory does not represent a valid Python module.

Alternatively, a single file can be imported as a module using
import_module_from_file().

	Parameters

	
	mod_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the module’s root directory, ~ expanded

	mod_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name under which the module can be imported with
mod_path being in sys.path [https://docs.python.org/3/library/sys.html#sys.path]. This is also used to
add the module to the sys.modules [https://docs.python.org/3/library/sys.html#sys.modules] cache.

	debug (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if import failed

	Returns

	
	The imported module or None, if importing
	failed and debug evaluated to False.

	Return type

	Union[None, ModuleType]

	Raises

	
	ImportError [https://docs.python.org/3/library/exceptions.html#ImportError] – If debug is set and import failed for whatever reason

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If mod_path did not point to an existing
 directory

	
import_module_from_file(mod_file: str [https://docs.python.org/3/library/stdtypes.html#str], *, base_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, mod_name_fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = 'from_file.{filename:}') → module

	Returns the module corresponding to the file at the given mod_file.

This uses importlib.util.spec_from_file_location() [https://docs.python.org/3/library/importlib.html#importlib.util.spec_from_file_location] and
importlib.util.module_from_spec() [https://docs.python.org/3/library/importlib.html#importlib.util.module_from_spec] to construct a module from the
given file, regardless of whether there is a __init__.py file beside
the file or not.

	Parameters

	
	mod_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a python module file to load as a module

	base_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, uses this to resolve relative
mod_file paths.

	mod_name_fstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to name the module. Should be a format string
that is supplied with the filename argument.

	Returns

	The imported module

	Return type

	ModuleType

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If mod_file was a relative path but no base_dir was
 given.

	
class LazyLoader(mod_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, _depth: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Delays import until the module’s attributes are accessed.

This is inspired by an implementation by Dboy Liao, see
here [https://levelup.gitconnected.com/python-trick-lazy-module-loading-df9b9dc111af].

It extends on it by allowing a depth until which loading will be lazy.

	
__init__(mod_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, _depth: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Initialize a placeholder for a module.

Warning

Values of _depth > 0 may lead to unexpected behaviour of the
root module, i.e. this object, because attribute calls do not
yield an actual object. Only use this in scenarios where you are
in full control over the attribute calls.

We furthermore suggest to not make the LazyLoader instance publicly
available in such cases.

	Parameters

	
	mod_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The module name to lazy-load upon attribute call.

	_depth (int [https://docs.python.org/3/library/functions.html#int], optional) – With a depth larger than zero, attribute
calls are not leading to an import yet, but to the creation
of another LazyLoader instance (with depth reduced by one).
Note the warning above regarding usage.

	
resolve()

	

	
resolve_lazy_imports(d: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = True) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	In-place resolves lazy imports in the given dict, recursively.

Warning

Only recurses on dicts, not on other mutable objects!

	Parameters

	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict to resolve lazy imports in

	recursive (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to recurse through the dict

	Returns

	d but with in-place resolved lazy imports

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
remove_from_sys_modules(cond: Callable [https://docs.python.org/3/library/typing.html#typing.Callable])

	Removes cached module imports from sys.modules [https://docs.python.org/3/library/sys.html#sys.modules] if their
fully qualified module name fulfills a certain condition.

	Parameters

	cond (Callable) – A unary function expecting a single str argument,
the module name, e.g. numpy.random. If the function returns
True, will remove that module.

	
resolve_types(types: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]]) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][type [https://docs.python.org/3/library/functions.html#type]]

	Resolves multiple types, that may be given as module strings, into a
tuple of types such that it can be used in isinstance() [https://docs.python.org/3/library/functions.html#isinstance] or
similar functions.

	Parameters

	types (Sequence[Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The types to potentially resolve

	Returns

	The resolved types sequence as a tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Return type

	Sequence[type [https://docs.python.org/3/library/functions.html#type]]

dantro._registry module

Implements an object registry that can be specialized for certain use
cases, e.g. to store all available container types.

	
class ObjectRegistry

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'object'

	A description string for the entries of this registry

	
_SKIP: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for skip_existing argument

	
_OVERWRITE: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for overwrite_existing argument

	
_EXPECTED_TYPE: Optional[Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], type [https://docs.python.org/3/library/functions.html#type]]] = None

	If set, will check for expected types

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property desc: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
keys()

	

	
items()

	

	
values()

	

	
__contains__(obj_or_key: Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given argument is part of the keys or values of this
registry.

	
_determine_name(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Determines the object name, using a potentially given name

	
_check_object(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Checks whether the object is valid.
If not, raises InvalidRegistryEntry.

	
register(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, skip_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, overwrite_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an entry to the registry.

	Parameters

	
	obj (Any) – The object to add to the registry.

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name to use. If not given, will
deduce a name from the given object.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if an
object of that name already exists. If None, the classes
default behavior (see _SKIP) is used.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite an
entry if an object with that name already exists. If None, the
classes default behavior (see _OVERWRITE)
is used.

	
_register_via_decorator(obj, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kws)

	Performs the registration operations when the decorator is used to
register an object.

	
_decorator(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Method that can be used as a decorator for registering objects
with this registry.

	Parameters

	
	arg (Union[Any, str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name that should be used or
the object that is to be added. If not a string, this refers
to the @is_container call syntax

	**kws – Passed to register()

dantro._yaml module

Takes care of all YAML-related imports and configuration

The ruamel.yaml.YAML object used here is imported from yayaml [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#module-yayaml]
and specialized such that it can load and dump dantro classes.

	
previous_DAGNode(loader, node)

	

	
cmap_constructor(loader, node) → Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]

	Constructs a matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap] object for use in
plots. Uses the ColorManager and
directly resolves the colormap object from it.

	
cmap_norm_constructor(loader, node) → Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]

	Constructs a matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap] object for use in
plots. Uses the ColorManager and
directly resolves the colormap object from it.

	
_from_original_yaml(representer, node, *, tag: str [https://docs.python.org/3/library/stdtypes.html#str])

	For objects where a _original_yaml attribute was saved.

dantro.abc module

This module holds the abstract base classes needed for dantro

	
PATH_JOIN_CHAR = '/'

	The character used for separating hierarchies in the path

	
BAD_NAME_CHARS = ('*', '?', '[', ']', '!', ':', '(', ')', '/', '\\')

	Substrings that may not appear in names of data containers

	
class AbstractDataContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The AbstractDataContainer is the class defining the data container
interface. It holds the bare basics of methods and attributes that _all_
dantro data tree classes should have in common: a name, some data, and some
association with others via an optional parent object.

Via the parent and the name, path capabilities are provided. Thereby, each
object in a data tree has some information about its location relative to
a root object.
Objects that have no parent are regarded to be an object that is located
“next to” root, i.e. having the path /<container_name>.

	
abstract __init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize the AbstractDataContainer, which implements the bare
essentials of what a data container should be.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data (Any) – The data that is to be stored

	parent (AbstractDataGroup, optional) – If given, this is supposed
to be the parent group for this container.

Note

This will not be used for setting the actual parent!
The group takes care of that once the container is added
to it.

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property data: Any

	The stored data.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
abstract __getitem__(key)

	Gets an item from the container.

	
abstract __setitem__(key, val) → None [https://docs.python.org/3/library/constants.html#None]

	Sets an item in the container.

	
abstract __delitem__(key) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the container.

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
abstract _format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterise this object. Should NOT include name and classname!

	
_abc_impl = <_abc._abc_data object>

	

	
class AbstractDataGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.abc.AbstractDataContainer, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

The AbstractDataGroup is the abstract basis of all data groups.

It enforces a MutableMapping interface with a focus on _setting_ abilities
and less so on deletion.

	
property data

	The stored data.

	
abstract add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Adds the given containers to the group.

	
abstract __contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is a member of this group

	
abstract keys()

	Returns an iterator over the container names in this group.

	
abstract values()

	Returns an iterator over the containers in this group.

	
abstract items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
abstract get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
abstract setdefault(key, default=None)

	If key is in the dictionary, return its value. If not, insert
key with a value of default and return default. default
defaults to None.

	
abstract recursive_update(other)

	Updates the group with the contents of another group.

	
abstract _format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: tree representation of this group

	
abstract _tree_repr(level: int [https://docs.python.org/3/library/functions.html#int] = 0) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	
abstract __delitem__(key) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the container.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
abstract __getitem__(key)

	Gets an item from the container.

	
abstract __init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize the AbstractDataContainer, which implements the bare
essentials of what a data container should be.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data (Any) – The data that is to be stored

	parent (AbstractDataGroup, optional) – If given, this is supposed
to be the parent group for this container.

Note

This will not be used for setting the actual parent!
The group takes care of that once the container is added
to it.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
abstract __setitem__(key, val) → None [https://docs.python.org/3/library/constants.html#None]

	Sets an item in the container.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
abstract _format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterise this object. Should NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear() → None. Remove all items from D.

	

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
class AbstractDataAttrs(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: collections.abc.Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping], dantro.abc.AbstractDataContainer

The BaseDataAttrs class defines the interface for the .attrs
attribute of a data container.

This class derives from the abstract class as otherwise there would be
circular inheritance. It stores the attributes as mapping and need not be
subclassed.

	
abstract __contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the attributes.

	
abstract __len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of attributes.

	
abstract keys()

	Returns an iterator over the attribute names.

	
abstract values()

	Returns an iterator over the attribute values.

	
abstract items()

	Returns an iterator over the (keys, values) tuple of the attributes.

	
abstract __delitem__(key) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the container.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
abstract __init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize the AbstractDataContainer, which implements the bare
essentials of what a data container should be.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data (Any) – The data that is to be stored

	parent (AbstractDataGroup, optional) – If given, this is supposed
to be the parent group for this container.

Note

This will not be used for setting the actual parent!
The group takes care of that once the container is added
to it.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
abstract __setitem__(key, val) → None [https://docs.python.org/3/library/constants.html#None]

	Sets an item in the container.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
abstract _format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterise this object. Should NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
class AbstractDataProxy(obj: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A data proxy fills in for the place of a data container, e.g. if data
should only be loaded on demand. It needs to supply the resolve method.

	
abstract __init__(obj: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Initialize the proxy object, being supplied with the object that
this proxy is to be proxy for.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this proxy’s class name

	
abstract resolve(*, astype: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]] = None)

	Get the data that this proxy is a placeholder for and return it.

Note that this method does not place the resolved data in the
container of which this proxy object is a placeholder for! This only
returns the data.

	
abstract property tags: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The tags describing this proxy object

	
_abc_impl = <_abc._abc_data object>

	

	
class AbstractPlotCreator(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, dm: DataManager, **plot_cfg)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class defines the interface for PlotCreator classes

	
abstract __init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, dm: DataManager, **plot_cfg)

	Initialize the plot creator, given a
DataManager, the plot name, and the
default plot configuration.

	
abstract __call__(*, out_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **update_plot_cfg)

	Perform the plot, updating the configuration passed to __init__
with the given values and then calling plot().

This method essentially takes care of parsing the configuration, while
plot() expects parsed arguments.

	
_abc_impl = <_abc._abc_data object>

	

	
abstract plot(*, out_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **cfg) → None [https://docs.python.org/3/library/constants.html#None]

	Given a specific configuration, performs a plot.

To parse plot configuration arguments, use __call__(), which
will call this method.

	
abstract get_ext() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the extension to use for the upcoming plot

	
abstract prepare_cfg(*, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], pspace: ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]) → tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Prepares the plot configuration for the plot.

This function is called by the plot manager before the first plot
is created.

The base implementation just passes the given arguments through.
However, it can be re-implemented by derived classes to change the
behaviour of the plot manager, e.g. by converting a plot configuration
to a ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace].

	
abstract _prepare_path(out_path: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Prepares the output path, creating directories if needed, then
returning the full absolute path.

This is called from __call__() and is meant to postpone
directory creation as far as possible.

dantro.base module

This module implements the base classes of dantro, based on the abstract
classes implemented in dantro.abc.

The base classes are classes that combine features of the abstract classes.
For example, the data group gains attribute functionality by being a
combination of the AbstractDataGroup and the
BaseDataContainer. In turn, the BaseDataContainer
uses the BaseDataAttrs class as an attribute and thereby extends
the AbstractDataContainer class.

Note

These classes are not meant to be instantiated but used as a basis to
implement more specialized BaseDataGroup- or
BaseDataContainer-derived classes.

	
class BaseDataProxy(obj: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Bases: dantro.abc.AbstractDataProxy

The base class for data proxies.

Note

This is still an abstract class and needs to be subclassed.

	
_tags: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = ()

	Associated tags.

These are empty by default and may also be overwritten in the object.

	
abstract __init__(obj: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Initialize a proxy object for the given object.

	
property tags: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The tags describing this proxy object

	
_abc_impl = <_abc._abc_data object>

	

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this proxy’s class name

	
abstract resolve(*, astype: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]] = None)

	Get the data that this proxy is a placeholder for and return it.

Note that this method does not place the resolved data in the
container of which this proxy object is a placeholder for! This only
returns the data.

	
class BaseDataAttrs(attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, **dc_kwargs)

	Bases: dantro.mixins.base.MappingAccessMixin, dantro.abc.AbstractDataAttrs

A class to store attributes that belong to a data container.

This implements a dict-like interface and serves as default attribute
class.

Note

Unlike the other base classes, this can already be instantiated. That
is required as it is needed in BaseDataContainer where no previous
subclassing or mixin is reasonable.

	
__init__(attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, **dc_kwargs)

	Initialize a DataAttributes object.

	Parameters

	
	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – The attributes to store

	**dc_kwargs – Further kwargs to the parent DataContainer

	
as_dict() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a shallow copy of the data attributes as a dict

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about these attributes

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__delitem__(key)

	Deletes an item

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key)

	Returns an item.

	
__iter__()

	Iterates over the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
get(key, default=None)

	Return the value at key, or default if key is not
available.

	
items()

	Returns an iterator over data’s (key, value) tuples

	
keys()

	Returns an iterator over the data’s keys.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
values()

	Returns an iterator over the data’s values.

	
class BaseDataContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.AttrsMixin, dantro.mixins.base.SizeOfMixin, dantro.mixins.base.BasicComparisonMixin, dantro.abc.AbstractDataContainer

The BaseDataContainer extends the abstract base class by the ability to
hold attributes and be path-aware.

	
_ATTRS_CLS

	The class to use for storing attributes

alias of dantro.base.BaseDataAttrs

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
property attrs

	The container attributes.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the content of this
data container.

	
abstract __delitem__(key) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the container.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
abstract __getitem__(key)

	Gets an item from the container.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
abstract __setitem__(key, val) → None [https://docs.python.org/3/library/constants.html#None]

	Sets an item in the container.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
class BaseDataGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.LockDataMixin, dantro.mixins.base.AttrsMixin, dantro.mixins.base.SizeOfMixin, dantro.mixins.base.BasicComparisonMixin, dantro.mixins.base.DirectInsertionModeMixin, dantro.abc.AbstractDataGroup

The BaseDataGroup serves as base group for all data groups.

It implements all functionality expected of a group, which is much more
than what is expected of a general container.

	
_ATTRS_CLS

	Which class to use for storing attributes

alias of dantro.base.BaseDataAttrs

	
_STORAGE_CLS

	The mapping type that is used to store the members of this group.

alias of dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_NEW_GROUP_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use when creating a new group via new_group().
If None, the type of the current instance is used for the new group.

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataGroup, which can store other containers and
attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	containers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The containers that are to be stored
as members of this group. If given, these are added one by one
using the .add method.

	attrs (None, optional) – A mapping that is stored as attributes

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the group was added to the
parent group, i.e. after initialization finished.

	
property attrs

	The container attributes.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
__iter__()

	Returns an iterator over the OrderedDict

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_lock_hook()

	Invoked upon locking.

	
_unlock_hook()

	Invoked upon unlocking.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data

	The stored data.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
values()

	Returns an iterator over the containers in this group.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

dantro.dag module

This is an implementation of a DAG for transformations on dantro objects.
It revolves around two main classes:

	Transformation that represents a data transformation.

	TransformationDAG that aggregates those
transformations into a directed acyclic graph.

For more information, see data transformation framework.

	
_fmt_time(seconds)

	

	
DAG_CACHE_DM_PATH = 'cache/dag'

	The path within the TransformationDAG associated
DataManager to which caches are loaded

	
DAG_CACHE_CONTAINER_TYPES_TO_UNPACK = (<class 'dantro.containers.general.ObjectContainer'>, <class 'dantro.containers.xr.XrDataContainer'>)

	Types of containers that should be unpacked after loading from cache because
having them wrapped into a dantro object is not desirable after loading them
from cache (e.g. because the name attribute is shadowed by tree objects …)

	
DAG_CACHE_RESULT_SAVE_FUNCS = {(<class 'dantro.containers.numeric.NumpyDataContainer'>,): <function <lambda>>, (<class 'dantro.containers.xr.XrDataContainer'>,): <function <lambda>>, (<class 'numpy.ndarray'>,): <function <lambda>>, ('xarray.DataArray',): <function <lambda>>, ('xarray.Dataset',): <function <lambda>>}

	Functions that can store the DAG computation result objects, distinguishing
by their type.

	
class Transformation(*, operation: str [https://docs.python.org/3/library/stdtypes.html#str], args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, Any [https://docs.python.org/3/library/typing.html#typing.Any]]], kwargs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, Any [https://docs.python.org/3/library/typing.html#typing.Any]]], dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TransformationDAG] = None, salt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, allow_failure: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, fallback: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None, memory_cache: bool [https://docs.python.org/3/library/functions.html#bool] = True, file_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, context: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A transformation is the collection of an N-ary operation and its inputs.

Transformation objects store the name of the operation that is to be
carried out and the arguments that are to be fed to that operation. After
a Transformation is defined, the only interaction with them is via the
compute() method.

For computation, the arguments are recursively inspected for whether there
are any DAGReference-derived objects; these need to be resolved first,
meaning they are looked up in the DAG’s object database and – if they are
another Transformation object – their result is computed. This can lead
to a traversal along the DAG.

Warning

Objects of this class should under no circumstances be changed after
they were created! For performance reasons, the
hashstr property is cached; thus,
changing attributes that are included into the hash computation will
not lead to a new hash, hence silently creating wrong behaviour.

All relevant attributes (operation, args, kwargs, salt)
are thus set read-only. This should be respected!

	
__init__(*, operation: str [https://docs.python.org/3/library/stdtypes.html#str], args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, Any [https://docs.python.org/3/library/typing.html#typing.Any]]], kwargs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, Any [https://docs.python.org/3/library/typing.html#typing.Any]]], dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][TransformationDAG] = None, salt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, allow_failure: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, fallback: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None, memory_cache: bool [https://docs.python.org/3/library/functions.html#bool] = True, file_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, context: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Initialize a Transformation object.

	Parameters

	
	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The operation that is to be carried out.

	args (Sequence[Union[DAGReference, Any]]) – Positional arguments
for the operation.

	kwargs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[DAGReference, Any]]) – Keyword arguments
for the operation. These are internally stored as a
KeyOrderedDict.

	dag (TransformationDAG, optional) – An associated DAG that is needed
for object lookup. Without an associated DAG, args or kwargs
may NOT contain any object references.

	salt (int [https://docs.python.org/3/library/functions.html#int], optional) – A hashing salt that can be used to let this
specific Transformation object have a different hash than other
objects, thus leading to cache misses.

	allow_failure (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Whether the
computation of this operation or its arguments may fail.
In case of failure, the fallback value is used.
If True or 'log', will emit a log message upon failure.
If 'warn', will issue a warning. If 'silent', will use
the fallback without any notification of failure.
Note that the failure may occur not only during computation of
this transformation’s operation, but also during the recursive
computation of the referenced arguments. In other words, if the
computation of an upstream dependency failed, the fallback will
be used as well.

	fallback (Any, optional) – If allow_failure was set, specifies
the alternative value to use for this operation. This may in
turn be a reference to another DAG node.

	memory_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the memory cache.
If false, will re-compute results each time if the result is
not read from the file cache.

	file_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – File cache options. Expected keys are
write (boolean or dict) and read (boolean or dict).

Note

The options given here are NOT reflected in the hash
of the object!

The following arguments are possible under the read key:

	enabled (bool, optional):
	Whether it should be attempted to read from the file
cache.

	always (bool, optional): If given, will always read from
	file and ignore the memory cache. Note that this
requires that a cache file was written before or will
be written as part of the computation of this node.

	load_options (dict, optional):
	Passed on to the method that loads the cache,
load().

Under the write key, the following arguments are possible.
They are evaluated in the order that they are listed here.
See _cache_result() for
more information.

	enabled (bool, optional):
	Whether writing is enabled at all

	always (bool, optional):
	If given, will always write.

	allow_overwrite (bool, optional):
	If False, will not write a cache file if one already
exists. If True, a cache file might be written,
although one already exists. This is still conditional
on the evaluation of the other arguments.

	min_size (int, optional):
	The minimum size of the result object that allows
writing the cache.

	max_size (int, optional):
	The maximum size of the result object that allows
writing the cache.

	min_compute_time (float, optional):
	The minimal individual computation time of this node
that is needed in order for the file cache to be
written.
Note that this value can be lower if the node result
is not computed but looked up from the cache.

	min_cumulative_compute_time (float, optional):
	The minimal cumulative computation time of this node
and all its dependencies that is needed in order for
the file cache to be written.
Note that this value can be lower if the node result
is not computed but looked up from the cache.

	storage_options (dict, optional):
	Passed on to the cache storage method,
_write_to_cache_file().
The following arguments are available:

	ignore_groups (bool, optional):
	Whether to store groups. Disabled by default.

	attempt_pickling (bool, optional):
	Whether it should be attempted to store results
that could not be stored via a dedicated storage
function by pickling them. Enabled by default.

	raise_on_error (bool, optional):
	Whether to raise on error to store a result.
Disabled by default; it is useful to enable this
when debugging.

	pkl_kwargs (dict, optional):
	Arguments passed on to the pickle.dump function.

	further keyword arguments:
	Passed on to the chosen storage method.

	context (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Some meta-data stored alongside the
Transformation, e.g. containing information about the context
it was created in. This is not taken into account for the hash.

	
_operation

	

	
_args

	

	
_kwargs

	

	
_dag

	

	
_salt

	

	
_allow_failure

	

	
_fallback

	

	
_hashstr

	

	
_status

	

	
_layer

	

	
_context

	

	
_profile

	

	
_mc_opts

	

	
_cache

	

	
_fc_opts

	

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A human-readable string characterizing this Transformation

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A deterministic string representation of this transformation.

Note

This is also used for hash creation, thus it does not include the
attributes that are set via the initialization arguments dag
and file_cache.

Warning

Changing this method will lead to cache invalidations!

	
property hashstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Computes the hash of this Transformation by creating a deterministic
representation of this Transformation using __repr__ and then
applying a checksum hash function to it.

Note that this does NOT rely on the built-in hash function but on the
custom dantro _hash function which produces a platform-independent
and deterministic hash. As this is a string-based (rather than an
integer-based) hash, it is not implemented as the __hash__ magic
method but as this separate property.

	Returns

	The hash string for this transformation

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	Computes the python-compatible integer hash of this object from the
string-based hash of this Transformation.

	
property operation: str [https://docs.python.org/3/library/stdtypes.html#str]

	The operation this transformation performs

	
property dag: TransformationDAG

	The associated TransformationDAG; used for object lookup

	
property dependencies: Set[DAGReference]

	Recursively collects the references that are found in the positional
and keyword arguments of this Transformation as well as in the fallback
value.

	
property resolved_dependencies: Set[Transformation]

	Transformation objects that this Transformation depends on

	
property profile: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]

	The profiling data for this transformation

	
property has_result: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether there is a memory-cached result available for this
transformation.

	
property status: str [https://docs.python.org/3/library/stdtypes.html#str]

	Return this Transformation’s status which is one of:

	initialized: set after initialization

	queued: queued for computation

	computed: successfully computed

	used_fallback: if a fallback value was used instead

	looked_up: after file cache lookup

	failed_here: if computation failed in this node

	failed_in_dependency: if computation failed in a dependency

	
property layer: int [https://docs.python.org/3/library/functions.html#int]

	Returns the layer this node can be placed at within the DAG by
recursively going over dependencies and setting the layer to the
maximum layer of the dependencies plus one.

Computation occurs upon first invocation, afterwards the cached value
is returned.

Note

Transformations without dependencies have a level of zero.

	
property context: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict that holds information about the context this
transformation was created in.

	
yaml_tag = '!dag_trf'

	

	
classmethod from_yaml(constructor, node)

	

	
classmethod to_yaml(representer, node)

	A YAML representation of this Transformation, including all its
arguments (which must again be YAML-representable). In essence, this
returns a YAML mapping that has the !dag_trf YAML tag prefixed,
such that reading it in will lead to the from_yaml method being
invoked.

Note

The YAML representation does not include the file_cache
parameters.

	
compute() → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Computes the result of this transformation by recursively resolving
objects and carrying out operations.

This method can also be called if the result is already computed; this
will lead only to a cache-lookup, not a re-computation.

	Returns

	The result of the operation

	Return type

	Any

	
_perform_operation(*, args: list [https://docs.python.org/3/library/stdtypes.html#list], kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Perform the operation, updating the profiling info on the side

	Parameters

	
	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – The positional arguments to the operation

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword arguments to the operation

	Returns

	The result of the operation

	Return type

	Any

	Raises

	
	BadOperationName – Upon bad operation or meta-operation name

	DataOperationFailed – Upon failure to perform the operation

	
_resolve_refs(cont: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]

	Resolves DAG references within a deepcopy of the given container by
iterating over it and computing the referenced nodes.

	Parameters

	cont (Sequence) – The container containing the references to resolve

	
_handle_error_and_fallback(err: Exception [https://docs.python.org/3/library/exceptions.html#Exception], *, context: str [https://docs.python.org/3/library/stdtypes.html#str]) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Handles an error that occured during application of the operation
or during resolving of arguments (and the recursively invoked
computations on dependent nodes).

Without error handling enabled, this will directly re-raise the active
exception. Otherwise, it will generate a log message and will resolve
the fallback value.

	
_update_profile(*, cumulative_compute: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, **times) → None [https://docs.python.org/3/library/constants.html#None]

	Given some new profiling times, updates the profiling information.

	Parameters

	
	cumulative_compute (float [https://docs.python.org/3/library/functions.html#float], optional) – The cumulative computation
time; if given, additionally computes the computation time for
this individual node.

	**times – Valid profiling data.

	
_lookup_result() → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Look up the transformation result to spare re-computation

	
_lookup_result_from_file() → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Looks up a cached result from file.

Note

Unlike the more general _lookup_result(), this one does
not check whether reading from cache is enabled or disabled.

	
_cache_result(result: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Stores a computed result in the cache

	
class TransformationDAG(*, dm: DataManager, define: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, select: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, transform: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, cache_dir: str [https://docs.python.org/3/library/stdtypes.html#str] = '.cache', file_cache_defaults: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, base_transform: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Transformation] = None, select_base: Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, str [https://docs.python.org/3/library/stdtypes.html#str]] = None, select_path_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = None, meta_operations: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, exclude_from_all: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, verbosity: int [https://docs.python.org/3/library/functions.html#int] = 1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class collects Transformation objects that are
(already by their own structure) connected into a directed acyclic graph.
The aim of this class is to maintain base objects, manage references, and
allow operations on the DAG, the most central of which is computing the
result of a node.

Furthermore, this class also implements caching of transformations, such
that operations that take very long can be stored (in memory or on disk) to
speed up future operations.

Objects of this class are initialized with dict-like arguments which
specify the transformation operations. There are some shorthands that allow
a simple definition syntax, for example the select syntax, which takes
care of selecting a basic set of data from the associated
DataManager.

See Data Transformation Framework for more information and examples.

	
SPECIAL_TAGS: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('dag', 'dm', 'select_base')

	Tags with special meaning

	
NODE_ATTR_DEFAULT_MAPPERS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'description': 'attr_mapper.dag.get_description', 'layer': 'attr_mapper.dag.get_layer', 'operation': 'attr_mapper.dag.get_operation', 'status': 'attr_mapper.dag.get_status'}

	The default node attribute mappers when
generating a graph object from the DAG.
These are passed to the map_node_attrs argument of
manipulate_attributes().

	
__init__(*, dm: DataManager, define: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, select: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, transform: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, cache_dir: str [https://docs.python.org/3/library/stdtypes.html#str] = '.cache', file_cache_defaults: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, base_transform: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Transformation] = None, select_base: Union [https://docs.python.org/3/library/typing.html#typing.Union][DAGReference, str [https://docs.python.org/3/library/stdtypes.html#str]] = None, select_path_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = None, meta_operations: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, exclude_from_all: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, verbosity: int [https://docs.python.org/3/library/functions.html#int] = 1)

	Initialize a TransformationDAG by loading the specified
transformations configuration into it, creating a directed acyclic
graph of Transformation objects.

See Data Transformation Framework for more information and examples.

	Parameters

	
	dm (DataManager) – The associated data manager
which is made available as a special node in the DAG.

	define (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[List[dict [https://docs.python.org/3/library/stdtypes.html#dict]], Any]], optional) – Definitions
of tags. This can happen in two ways: If the given entries
contain a list or tuple, they are interpreted as sequences of
transformations which are subsequently added to the DAG, the
tag being attached to the last transformation of each sequence.
If the entries contain objects of any other type, including
dict (!), they will be added to the DAG via a single node
that uses the define operation.
This argument can be helpful to define inputs or variables
which may then be used in the transformations added via
the select or transform arguments.
See The define interface for more information and examples.

	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Selection specifications, which are
translated into regular transformations based on getitem
operations. The base_transform and select_base
arguments can be used to define from which object to select.
By default, selection happens from the associated DataManager.

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Transform specifications.

	cache_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the cache directory to
create if file caching is enabled. If this is a relative path,
it is interpreted relative to the associated data manager’s
data directory. If it is absolute, the absolute path is used.
The directory is only created if it is needed.

	file_cache_defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Default arguments for file
caching behaviour. This is recursively updated with the
arguments given in each individual select or transform
specification.

	base_transform (Sequence[Transformation], optional) – A sequence of
transform specifications that are added to the DAG prior to
those added via define, select and transform.
These can be used to create some other object from the data
manager which should be used as the basis of select
operations. These transformations should be kept as simple as
possible and ideally be only used to traverse through the data
tree.

	select_base (Union[DAGReference, str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Which tag to
base the select operations on. If None, will use the
(always-registered) tag for the data manager, dm. This
attribute can also be set via the select_base property.

	select_path_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, this path is prefixed
to all path specifications made within the select
argument. Note that unlike setting the select_base this
merely joins the given prefix to the given paths, thus leading
to repeated path resolution. For that reason, using the
select_base argument is generally preferred and the
select_path_prefix should only be used if select_base
is already in use.
If this path ends with a /, it is directly prepended. If
not, the / is added before adjoining it to the other path.

	meta_operations (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Meta-operations are basically
function definitions using the language of the transformation
framework; for information on how to define and use them, see
Meta-Operations.

	exclude_from_all (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Tag names that should not
be defined as compute()
targets if compute_only: all is set there.
Note that, alternatively, tags can be named starting with
. or _ to exclude them from that list.

	verbosity (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Logging verbosity during computation.
This mostly pertains to the extent of statistics being emitted
through the logger.

	0: No statistics

	1: Per-node statistics (mean, std, min, max)

	2: Total effective time for the 5 slowest operations

	3: Same as 2 but for all operations

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A human-readable string characterizing this TransformationDAG

	
property dm: DataManager

	The associated DataManager

	
property hashstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the hash of this DAG, which depends solely on the hash of
the associated DataManager.

	
property objects: DAGObjects

	The object database

	
property tags: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	A mapping from tags to objects’ hashes; the hashes can be looked
up in the object database to get to the objects.

	
property nodes: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The nodes of the DAG

	
property ref_stacks: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Named reference stacks, e.g. for resolving tags that were defined ´
inside meta-operations.

	
property meta_operations: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The names of all registered meta-operations.

To register new meta-operations, use the dedicated registration method,
register_meta_operation().

	
property cache_dir: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to the cache directory that is associated with the
DataManager that is coupled to this DAG. Note that the directory might
not exist yet!

	
property cache_files: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Scans the cache directory for cache files and returns a dict that
has as keys the hash strings and as values a tuple of full path and
file extension.

	
property select_base: DAGReference

	The reference to the object that is used for select operations

	
property profile: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]

	Returns the profiling information for the DAG.

	
property profile_extended: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[float [https://docs.python.org/3/library/functions.html#float], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float]]]]

	Builds an extended profile that includes the profiles from all
transformations and some aggregated information.

This is calculated anew upon each invocation; the result is not cached.

The extended profile contains the following information:

	tags: profiles for each tag, stored under the tag

	aggregated: aggregated statistics of all nodes with profile
information on compute time, cache lookup, cache writing

	sorted: individual profiling times, with NaN values set to 0

	
register_meta_operation(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, transform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Registers a new meta-operation, i.e. a transformation sequence with
placeholders for the required positional and keyword arguments.
After registration, these operations are available in the same way as
other operations; unlike non-meta-operations, they will lead to
multiple nodes being added to the DAG.

See Meta-Operations for more information.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the meta-operation; can only be used once.

	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Select specifications

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Transform specifications

	
add_node(*, operation: str [https://docs.python.org/3/library/stdtypes.html#str], args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, tag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_compute: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, file_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, fallback: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None, **trf_kwargs) → DAGReference

	Add a new node by creating a new
Transformation object and adding it to the
node list.

In case of operation being a meta-operation, this method will add
multiple Transformation objects to the node list. The tag and the
file_cache argument then refer to the result node of the meta-
operation, while the **trf_kwargs are passed to all these nodes.
For more information, see Meta-Operations.

	Parameters

	
	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the operation or meta-operation.

	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Positional arguments to the operation

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments to the operation

	tag (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The tag the transformation should be made
available as.

	force_compute (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the result of this node
will always be computed as part of compute().

	file_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – File cache options for this node. If
defaults were given during initialization, those defaults will
be updated with the given dict.

	fallback – (Any, optional): The fallback value in case that the
computation of this node fails.

	**trf_kwargs – Passed on to
__init__()

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the tag already exists

	Returns

	
	The reference to the created node. In case of the
	operation being a meta operation, the return value is a
reference to the result node of the meta-operation.

	Return type

	DAGReference

	
add_nodes(*, define: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]] = None, select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, transform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None)

	Adds multiple nodes by parsing the specification given via the
define, select, and transform arguments (in that order).

Note

The current select_base
property value is used as basis for all getitem operations.

	Parameters

	
	define (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[List[dict [https://docs.python.org/3/library/stdtypes.html#dict]], Any]], optional) – Definitions
of tags. This can happen in two ways: If the given entries
contain a list or tuple, they are interpreted as sequences of
transformations which are subsequently added to the DAG, the
tag being attached to the last transformation of each sequence.
If the entries contain objects of any other type, including
dict (!), they will be added to the DAG via a single node
that uses the define operation.
This argument can be helpful to define inputs or variables
which may then be used in the transformations added via
the select or transform arguments.
See The define interface for more information and examples.

	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Selection specifications, which are
translated into regular transformations based on getitem
operations. The base_transform and select_base
arguments can be used to define from which object to select.
By default, selection happens from the associated DataManager.

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Transform specifications.

	
compute(*, compute_only: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, verbosity: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Computes all specified tags and returns a result dict.

Depending on the verbosity attribute, a varying level of profiling
statistics will be emitted via the logger.

	Parameters

	compute_only (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The tags to compute.
If None, will compute all non-private tags: all tags
not starting with . or _ that are not included
in the TransformationDAG.exclude_from_all list.

	Returns

	A mapping from tags to fully computed results.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
generate_nx_graph(*, tags_to_include: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = 'all', manipulate_attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, include_results: bool [https://docs.python.org/3/library/functions.html#bool] = False, lookup_tags: bool [https://docs.python.org/3/library/functions.html#bool] = True, edges_as_flow: bool [https://docs.python.org/3/library/functions.html#bool] = True) → DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]

	Generates a representation of the DAG as a
networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph] object, which can be useful for debugging.

Nodes represent
Transformations and are
identified by their hashstr().
The Transformation objects are added as node
property obj and potentially existing tags are added as tag.

Edges represent dependencies between nodes.
They can be visualized in two ways:

	With edges_as_flow: true, edges point in the direction of
results being computed, representing a flow of results.

	With edges_as_flow: false, edges point towards the
dependency of a node that needs to be computed before the node
itself can be computed.

See Graph representation and visualization for more information.

Note

The returned graph data structure is not used internally but is
a representation that is generated from the internally used
data structures.
Subsequently, changes to the graph structure will not have an
effect on this TransformationDAG.

Hint

Use visualize() to generate a visual output.
For processing the DAG representation elsewhere, you can use the
export_graph() function.

Warning

Do not modify the associated Transformation
objects!

These objects are not deep-copied into the graph’s node
properties. Thus, changes to these objects will reflect on the
state of the TransformationDAG which may
have unexpected effects, e.g. because the hash will not be updated.

	Parameters

	
	tags_to_include (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – Which tags
to include into the directed graph. Can be all to include
all tags.

	manipulate_attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]], optional) – Allows to
manipulate node and edge attributes.
See manipulate_attributes() for more
information.

By default, this includes a number of default node attribute
mappers, defined in NODE_ATTR_DEFAULT_MAPPERS.
These can be overwritten or extended via the map_node_attrs
key within this argument.

Note

This method registers specialized data operations with the
operations database that are
meant for handling the case where node attributes
are associated with Transformation
objects.

Available operations (with prefix attr_mapper):

	{prefix}.get_operation returns the operation
associated with a node.

	{prefix}.get_operation generates a string from
the positional and keyword arguments to a node.

	{prefix}.get_layer returns the layer, i.e. the
distance from the farthest dependency; nodes without
dependencies have layer 0.
See dantro.dag.Transformation.layer.

	{prefix}.get_description creates a description
string that is useful for visualization (e.g. as
node label).

To implement your own operation, take care to follow the
syntax of map_attributes().

Note

By default, there are no attributes associated with the
edges of the DAG.

	include_results (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to include results into
the node attributes.

Note

These will all be None unless compute() was
invoked before generating the graph.

	lookup_tags (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to lookup tags for each node,
storing it in the tag node attribute. The tags in
tags_to_include are always included, but the reverse lookup
of tags can be costly, in which case this should be disabled.

	edges_as_flow (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, edges point from a node
towards the nodes that require the computed result; if false,
they point towards the dependency of a node.

	
visualize(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], g: DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph] = None, generation: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, drawing: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, use_defaults=True, scale_figsize: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]] = (0.25, 0.2), show_node_status: bool [https://docs.python.org/3/library/functions.html#bool] = True, node_status_color: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, layout: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, figure_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, annotate_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, save_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}) → DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]

	Uses generate_nx_graph() to generate a DAG representation
as a networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph] and then creates a visualization.

Warning

The plotted graph may contain overlapping edges or nodes, depending
on the size and structure of your DAG. This is less pronounced if
pygraphviz [https://pygraphviz.github.io] is installed, which
provides vastly more capable layouting algorithms.

To alleviate this, the default layouting and drawing arguments will
generate a graph with partly transparent nodes and edges and wiggle
node positions around, thus making edges more discernible.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to store the output

	g (DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], optional) – If given, will use this graph
instead of generating a new one.

	generation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Arguments for graph generation, passed
on to generate_nx_graph(). Not allowed if g was
given.

	drawing (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Drawing arguments, containing the
nodes, edges and labels keys. The labels key
can contain the from_attr key which will read the attribute
specified there and use it for the label.

	use_defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Whether to use default drawing
arguments which are optimized for a simple representation.
These are recursively updated by the ones given in drawing.
Set to false to use the networkx defaults instead.

	scale_figsize (Union[bool [https://docs.python.org/3/library/functions.html#bool], Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]], optional) – If True
or a tuple, will set the figure size according to:
(width_0 * max_occup. * s_w, height_0 * max_level * s_h)
where s_w and s_h are the scaling factors. The maximum
occupation refers to the highest number of nodes on a single
layer. This figure size scaling avoids nodes overlapping for
larger graphs.

Note

The default values here are a heuristic and depend very
much on the size of the node labels and the font size.

	show_node_status (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will color-code the
node status (computed, not computed, failed), setting the
nodes.node_color key correspondingly.

Note

Node color is plotted behind labels, thus requiring some
transparency for the labels.

	node_status_color (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If show_node_status is set,
will use this map to determine the node colours. It should
contain keys for all possible values of
dantro.dag.Transformation.status. In addition, there
needs to be a fallback key that is used for nodes where no
status can be determined.

	layout (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to (currently hard-coded) layouting
functions.

	figure_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to
matplotlib.pyplot.figure() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure] for setting up the figure

	annotate_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Used for annotating the graph
with a title and a legend (for show_node_status).
Supported keys: title, title_kwargs, add_legend,
legend_kwargs, handle_kwargs.

	save_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to
matplotlib.pyplot.savefig() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig] for saving the figure

	Returns

	The passed or generated graph object.

	Return type

	DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]

	
_parse_trfs(*, select: dict [https://docs.python.org/3/library/stdtypes.html#dict], transform: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]], define: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parse the given arguments to bring them into a uniform format: a
sequence of parameters for transformation operations.
The arguments are parsed starting with the define tags, followed by
the select and the transform argument.

	Parameters

	
	select (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The shorthand to select certain objects from the
DataManager. These may also include transformations.

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Actual transformation operations,
carried out afterwards.

	define (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Each entry corresponds either to a
transformation sequence (if type is list or tuple) where the
key is used as the tag and attached to the last transformation
of each sequence.
For any other type, will add a single transformation directly
with the content of each entry.

	Returns

	
	A sequence of transformation parameters that was
	brought into a uniform structure.

	Return type

	Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On invalid type within entry of select

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When file_cache is given for selection from base

	
_add_meta_operation_nodes(operation: str [https://docs.python.org/3/library/stdtypes.html#str], *, args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, tag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, force_compute: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, file_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, allow_failure: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, fallback: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None, **trf_kwargs) → DAGReference

	Adds Transformation nodes for meta-operations

This method resolves the placeholder references in the specified meta-
operation such that they point to the args and kwargs.
It then calls add_node()
repeatedly to add the actual nodes.

Note

The last node added by this method is considered the “result” of
the selected meta-operation. Subsequently, the arguments tag,
file_cache, allow_failure and fallback are only
applied to this last node.

The trf_kwargs (which include the salt) on the other hand
are passed to all transformations of the meta-operation.

	Parameters

	
	operation (str [https://docs.python.org/3/library/stdtypes.html#str]) – The meta-operation to add nodes for

	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Positional arguments to the meta-operation

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments to the meta-operation

	tag (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The tag that is to be attached to the result
of this meta-operation.

	file_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – File caching options for the result.

	allow_failure (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Specifies the error
handling for the result node of this meta-operation.

	fallback (Any, optional) – Specifies the fallback for the result
node of this meta-operation.

	**trf_kwargs – Transformation keyword arguments, passed on to all
transformations that are to be added.

	
_update_profile(**times)

	Updates profiling information by adding the given time to the
matching key.

	
_parse_compute_only(compute_only: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Prepares the compute_only argument for use in
compute().

	
_find_tag(trf: Union [https://docs.python.org/3/library/typing.html#typing.Union][Transformation, str [https://docs.python.org/3/library/stdtypes.html#str]]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Looks up a tag given a transformation or its hashstr.

If no tag is associated returns None. If multiple tags are associated,
returns only the first.

	Parameters

	trf (Union[Transformation, str [https://docs.python.org/3/library/stdtypes.html#str]]) – The transformation, either as
the object or as its hashstr.

	
_retrieve_from_cache_file(trf_hash: str [https://docs.python.org/3/library/stdtypes.html#str], *, always_from_file: bool [https://docs.python.org/3/library/functions.html#bool] = False, unpack: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **load_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Retrieves a transformation’s result from a cache file and stores it
in the data manager’s cache group.

Note

If a file was already loaded from the cache, it will not be loaded
again. Thus, the DataManager acts as a persistent storage for
loaded cache files. Consequently, these are shared among all
TransformationDAG objects.

	Parameters

	
	trf_hash (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hash to use for lookup

	always_from_file (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If set, will always load from
file instead of using a potentially existing already loaded
object in the data manager.

	unpack (Optional[bool [https://docs.python.org/3/library/functions.html#bool]], optional) – Whether to unpack the data from
the container. If None, will only do so for certain types, see
DAG_CACHE_CONTAINER_TYPES_TO_UNPACK.

	**load_kwargs – Passed on to load function of associated DataManager

	
_write_to_cache_file(trf_hash: str [https://docs.python.org/3/library/stdtypes.html#str], *, result: Any [https://docs.python.org/3/library/typing.html#typing.Any], ignore_groups: bool [https://docs.python.org/3/library/functions.html#bool] = True, attempt_pickling: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_on_error: bool [https://docs.python.org/3/library/functions.html#bool] = False, pkl_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **save_kwargs) → bool [https://docs.python.org/3/library/functions.html#bool]

	Writes the given result object to a hash file, overwriting existing
ones.

	Parameters

	
	trf_hash (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hash; will be used for the file name

	result (Any) – The result object to write as a cache file

	ignore_groups (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to store groups. Disabled
by default.

	attempt_pickling (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether it should be attempted
to store results that could not be stored via a dedicated
storage function by pickling them. Enabled by default.

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise on error to
store a result. Disabled by default; it is useful to enable
this when debugging.

	pkl_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Arguments passed on to the
pickle.dump function.

	**save_kwargs – Passed on to the chosen storage method.

	Returns

	Whether a cache file was saved

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – When attempting to store instances of
 BaseDataGroup or a derived class

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – When raise_on_error was given and there was an
 error during saving.

dantro.data_mngr module

This module implements the DataManager class, the root of the data tree.

	
DATA_TREE_DUMP_EXT = '.d3'

	File extension for data cache file

	
_fmt_time(seconds)

	Locally used time formatting function

	
_load_file_wrapper(filepath: str [https://docs.python.org/3/library/stdtypes.html#str], *, dm: DataManager, loader: str [https://docs.python.org/3/library/stdtypes.html#str], **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][BaseDataGroup, str [https://docs.python.org/3/library/stdtypes.html#str]]

	A wrapper around _load_file()
that is used for parallel loading via multiprocessing.Pool.
It takes care of resolving the loader function and instantiating the file-
loading method.

This function needs to be on the module scope such that it is pickleable.
For that reason, loader resolution also takes place here, because pickling
the load function may be problematic.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the file to load data from

	dm (DataManager) – The DataManager instance to resolve the loader from

	loader (str [https://docs.python.org/3/library/stdtypes.html#str]) – The namer of the loader

	**kwargs – Any further loading arguments.

	Returns

	
	The return value of
	_load_file().

	Return type

	Tuple[BaseDataContainer, str [https://docs.python.org/3/library/stdtypes.html#str]]

	
_parse_parallel_opts(files: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], *, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, processes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, min_files: int [https://docs.python.org/3/library/functions.html#int] = 2, min_total_size: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, cpu_count: int [https://docs.python.org/3/library/functions.html#int] = 2) → int [https://docs.python.org/3/library/functions.html#int]

	Parser function for the parallel file loading options dict

	Parameters

	
	files (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of files that are to be loaded

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use parallel loading. If True,
the threshold arguments will still need to be fulfilled.

	processes (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of processors to use; if this is
a negative integer, will deduce from available CPU count.

	min_files (int [https://docs.python.org/3/library/functions.html#int], optional) – If there are fewer files to load than this
number, will not use parallel loading.

	min_total_size (int [https://docs.python.org/3/library/functions.html#int], optional) – If the total file size is smaller than
this file size (in bytes), will not use parallel loading.

	cpu_count (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of CPUs to consider “available”.
Defaults to os.cpu_count() [https://docs.python.org/3/library/os.html#os.cpu_count], i.e. the number of actually
available CPUs.

	Returns

	
	number of processes to use. Will return 1 if loading should not
	happen in parallel. Additionally, this number will never be larger
than the number of files in order to prevent unnecessary processes.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class DataManager(data_dir: str [https://docs.python.org/3/library/stdtypes.html#str], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, load_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, out_dir: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]] = '_output/{timestamp:}', out_dir_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, create_groups: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]] = None, condensed_tree_params: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, default_tree_cache_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: dantro.groups.ordered.OrderedDataGroup

The DataManager is the root of a data tree, coupled to a specific data
directory.

It handles the loading of data and can be used for interactive work with
the data.

	
_BASE_LOAD_CFG = None

	

	
_DEFAULT_GROUPS = None

	

	
_NEW_GROUP_CLS

	alias of dantro.groups.ordered.OrderedDataGroup

	
_DEFAULT_TREE_CACHE_PATH = '.tree_cache.d3'

	

	
__init__(data_dir: str [https://docs.python.org/3/library/stdtypes.html#str], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, load_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, out_dir: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]] = '_output/{timestamp:}', out_dir_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, create_groups: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]] = None, condensed_tree_params: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, default_tree_cache_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Initializes a DataManager for the specified data directory.

	Parameters

	
	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the directory the data can be found in. If this is
a relative path, it is considered relative to the current
working directory.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – which name to give to the DataManager. If no
name is given, the data directories basename will be used

	load_cfg (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The base configuration used
for loading data. If a string is given, assumes it to be the
path to a YAML file and loads it using the
load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function. If None is given,
it can still be supplied to the
load() method later on.

	out_dir (Union[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]], optional) – where output is written to.
If this is given as a relative path, it is considered relative
to the data_dir. A formatting operation with the keys
timestamp and name is performed on this, where the
latter is the name of the data manager. If set to False, no
output directory is created.

	out_dir_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional arguments that affect
how the output directory is created.

	create_groups (List[Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]], optional) – If given, these
groups will be created after initialization. If the list
entries are strings, the default group class will be used; if
they are dicts, the name key specifies the name of the group
and the Cls key specifies the type. If a string is given
instead of a type, the lookup happens from the
_DATA_GROUP_CLASSES variable.

	condensed_tree_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, will set the
parameters used for the condensed tree representation.
Available options: max_level and condense_thresh, where
the latter may be a callable.
See dantro.base.BaseDataGroup._tree_repr() for more
information.

	default_tree_cache_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the default
tree cache file. If not given, uses the value from the class
variable _DEFAULT_TREE_CACHE_PATH. Whichever value was
chosen is then prepared using the
_parse_file_path()
method, which regards relative paths as being relative to the
associated data directory.

	
_set_condensed_tree_params(**params)

	Helper method to set the _COND_TREE_* class variables

	
_init_dirs(*, data_dir: str [https://docs.python.org/3/library/stdtypes.html#str], out_dir: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]], timestamp: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, timefstr: str [https://docs.python.org/3/library/stdtypes.html#str] = '%y%m%d-%H%M%S', exist_ok: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Initializes the directories managed by this DataManager and returns
a dictionary that stores the absolute paths to these directories.

If they do not exist, they will be created.

	Parameters

	
	data_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the directory the data can be found in. If this is
a relative path, it is considered relative to the current
working directory.

	out_dir (Union[str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]]) – where output is written to.
If this is given as a relative path, it is considered relative
to the data directory. A formatting operation with the
keys timestamp and name is performed on this, where
the latter is the name of the data manager. If set to False,
no output directory is created.

	timestamp (float [https://docs.python.org/3/library/functions.html#float], optional) – If given, use this time to generate
the date format string key. If not, uses the current time.

	timefstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Format string to use for generating the
string representation of the current timestamp

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the output directory may exist.
Note that it only makes sense to set this to True if you can
be sure that there will be no file conflicts! Otherwise the
errors will just occur at a later stage.

	Returns

	
	The directory paths registered under certain keys,
	e.g. data and out.

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
property hashstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	The hash of a DataManager is computed from its name and the coupled
data directory, which are regarded as the relevant parts. While other
parts of the DataManager are not invariant, it is characterized most by
the directory it is associated with.

As this is a string-based hash, it is not implemented as the __hash__
magic method but as a separate property.

	WARNING Changing how the hash is computed for the DataManager will
	invalidate all TransformationDAG caches.

	
__hash__() → int [https://docs.python.org/3/library/functions.html#int]

	The hash of this DataManager, computed from the hashstr property

	
property tree_cache_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Absolute path to the default tree cache file

	
property tree_cache_exists: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the tree cache file exists

	
property available_loaders: List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns a sorted list of available loader function names

	
property _loader_registry: DataLoaderRegistry

	Retrieves the data loader registry

	
load_from_cfg(*, load_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, update_load_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, exists_action: str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise', print_tree: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Load multiple data entries using the specified load configuration.

	Parameters

	
	load_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The load configuration to use. If not
given, the one specified during initialization is used.

	update_load_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, it is used to update
the load configuration recursively

	exists_action (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The behaviour upon existing data.
Can be: raise (default), skip, skip_nowarn,
overwrite, overwrite_nowarn. With the *_nowarn
values, no warning is given if an entry already existed.

	print_tree (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If True, the full tree
representation of the DataManager is printed after the data
was loaded. If 'condensed', the condensed tree will be
printed.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Raised if a given configuration entry was of invalid
 type, i.e. not a dict

	
load(entry_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, loader: str [https://docs.python.org/3/library/stdtypes.html#str], enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, glob_str: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], base_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, target_group: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, target_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, print_tree: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = False, load_as_attr: bool [https://docs.python.org/3/library/functions.html#bool] = False, parallel: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = False, **load_params) → None [https://docs.python.org/3/library/constants.html#None]

	Performs a single load operation.

	Parameters

	
	entry_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of this entry; will also be the name of the
created group or container, unless target_basename is given

	loader (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the loader to use

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the load operation is enabled.
If not, simply returns without loading any data or performing
any further checks.

	glob_str (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A glob string or a list of glob
strings by which to identify the files within data_dir that
are to be loaded using the given loader function

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The base directory to concatenate the
glob string to; if None, will use the DataManager’s data
directory. With this option, it becomes possible to load data
from a path outside the associated data directory.

	target_group (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, the files to be loaded will
be stored in this group. This may only be given if the argument
target_path is not given.

	target_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to write the data to. This
can be a format string. It is evaluated for each file that has
been matched. If it is not given, the content is loaded to a
group with the name of this entry at the root level.
Available keys are: basename, match (if path_regex
is used, see **load_params)

	print_tree (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If True, the full tree
representation of the DataManager is printed after the data
was loaded. If 'condensed', the condensed tree will be
printed.

	load_as_attr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the loaded entry will be
added not as a new DataContainer or DataGroup, but as an
attribute to an (already existing) object at target_path.
The name of the attribute will be the entry_name.

	parallel (Union[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – If True, data is loaded in parallel.
If a dict, can supply more options:

	enabled: whether to use parallel loading

	processes: how many processes to use; if None, will
use as many as are available. For negative integers, will
use os.cpu_count() + processes processes.

	min_files: if given, will fall back to non-parallel
loading if fewer than the given number of files were
matched by glob_str

	min_size: if given, specifies the minimum total
size of all matched files (in bytes) below which to fall
back to non-parallel loading

Note that a single file will never be loaded in parallel and
there will never be more processes used than files that were
selected to be loaded.
Parallel loading incurs a constant overhead and is typically
only speeding up data loading if the task is CPU-bound. Also,
it requires the data tree to be fully serializable.

	**load_params – Further loading parameters, all optional. These are
evaluated by _load().

	ignore (list):
	The exact file names in this list will be ignored during
loading. Paths are seen as elative to the data directory
of the data manager.

	required (bool):
	If True, will raise an error if no files were found.
Default: False.

	path_regex (str):
	This pattern can be used to match a part of the file path
that is being loaded. The match result is available to the
format string under the match key.
See _prepare_target_path() for more information.

	exists_action (str):
	The behaviour upon existing data.
Can be: raise (default), skip, skip_nowarn,
overwrite, overwrite_nowarn.
With *_nowarn values, no warning is given if an entry
already existed. Note that this is ignored when
the load_as_attr argument is given.

	unpack_data (bool, optional):
	If True, and load_as_attr is active, not the
DataContainer or DataGroup itself will be stored in the
attribute, but the content of its .data attribute.

	progress_indicator (bool):
	Whether to print a progress indicator or not. Default: True

	any further kwargs:
	passed on to the loader function

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Upon invalid combination of target_group and
 target_path arguments

	
_load(*, target_path: str [https://docs.python.org/3/library/stdtypes.html#str], loader: str [https://docs.python.org/3/library/stdtypes.html#str], glob_str: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], include_files: bool [https://docs.python.org/3/library/functions.html#bool] = True, include_directories: bool [https://docs.python.org/3/library/functions.html#bool] = True, load_as_attr: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = False, base_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, ignore: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, required: bool [https://docs.python.org/3/library/functions.html#bool] = False, path_regex: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, exists_action: str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise', unpack_data: bool [https://docs.python.org/3/library/functions.html#bool] = False, progress_indicator: bool [https://docs.python.org/3/library/functions.html#bool] = True, parallel: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = False, **loader_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Helper function that loads a data entry to the specified path.

	Parameters

	
	target_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to load the result of the loader to.
This can be a format string; it is evaluated for each file.
Available keys are: basename, match (if path_regex is
given)

	loader (str [https://docs.python.org/3/library/stdtypes.html#str]) – The loader to use

	glob_str (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A glob string or a list of glob
strings to match files in the data directory

	include_files (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will exclude paths that
point to files.

	include_directories (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will exclude paths
that point to directories.

	load_as_attr (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None], optional) – If a string, the entry
will be loaded into the object at target_path under a new
attribute with this name.

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The base directory to concatenate the
glob string to; if None, will use the DataManager’s data
directory. With this option, it becomes possible to load data
from a path outside the associated data directory.

	ignore (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The exact file names in this list
will be ignored during loading. Paths are seen as relative to
the data directory.

	required (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will raise an error if no files
were found or if loading of a file failed.

	path_regex (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The regex applied to the relative path
of the files that were found. It is used to generate the name
of the target container. If not given, the basename is used.

	exists_action (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The behaviour upon existing data.
Can be: raise (default), skip, skip_nowarn,
overwrite, overwrite_nowarn. With *_nowarn values,
no warning is given if an entry already existed.
Note that this is ignored if load_as_attr is given.

	unpack_data (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, and load_as_attr is
active, not the DataContainer or DataGroup itself will be
stored in the attribute, but the content of its .data
attribute.

	progress_indicator (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to print a progress
indicator or not

	parallel (Union[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – If True, data is loaded in parallel.
If a dict, can supply more options:

	enabled: whether to use parallel loading

	processes: how many processes to use; if None, will
use as many as are available. For negative integers, will
use os.cpu_count() + processes processes.

	min_files: if given, will fall back to non-parallel
loading if fewer than the given number of files were
matched by glob_str

	min_size: if given, specifies the minimum total
size of all matched files (in bytes) below which to fall
back to non-parallel loading

Note that a single file will never be loaded in parallel and
there will never be more processes used than files that were
selected to be loaded.
Parallel loading incurs a constant overhead and is typically
only speeding up data loading if the task is CPU-bound. Also,
it requires the data tree to be fully serializable.

	**loader_kwargs – passed on to the loader function

	No Longer Returned:
	
	Tuple[int, int]: Tuple of number of files that matched the glob
	strings, including those that may have been skipped, and
number of successfully loaded and stored entries

	
_load_file(filepath: str [https://docs.python.org/3/library/stdtypes.html#str], *, loader: str [https://docs.python.org/3/library/stdtypes.html#str], load_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], target_path: str [https://docs.python.org/3/library/stdtypes.html#str], path_sre: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Pattern [https://docs.python.org/3/library/re.html#re.Pattern]], load_as_attr: str [https://docs.python.org/3/library/stdtypes.html#str], TargetCls: type [https://docs.python.org/3/library/functions.html#type], required: bool [https://docs.python.org/3/library/functions.html#bool], _base_path: str [https://docs.python.org/3/library/stdtypes.html#str], target_path_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **loader_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], BaseDataContainer], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Loads the data of a single file into a dantro object and returns
the loaded object (or None) and the parsed target path key sequence.

	
_resolve_loader(loader: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Callable [https://docs.python.org/3/library/typing.html#typing.Callable], type [https://docs.python.org/3/library/functions.html#type]]

	Resolves the loader function and returns a 2-tuple containing the
load function and the declared dantro target type to load data to.

	
_resolve_path_list(*, glob_str: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], ignore: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, base_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, required: bool [https://docs.python.org/3/library/functions.html#bool] = False, **glob_kwargs) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Create the list of file or directory paths to load.

Internally, this uses a set, thus ensuring that the paths are
unique. The set is converted to a list before returning.

Note

Paths may refer to file and directory paths.

	Parameters

	
	glob_str (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The glob pattern or a list of
glob patterns to use for searching for files. Relative paths
will be seen as relative to base_path.

	ignore (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of paths to ignore. Relative paths will
be seen as relative to base_path. Supports glob patterns.

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The base path for the glob pattern. If
not given, will use the data directory.

	required (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will raise an error if at least
one matching path is required.

	**glob_kwargs – Passed on to dantro.tools.glob_paths().
See there for more available parameters.

	Returns

	The (file or directory) paths to load.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	
	MissingDataError – If no files could be matched.

	RequiredDataMissingError – If no files could be matched but were required.

	
_prepare_target_path(target_path: str [https://docs.python.org/3/library/stdtypes.html#str], *, filepath: str [https://docs.python.org/3/library/stdtypes.html#str], base_path: str [https://docs.python.org/3/library/stdtypes.html#str], path_sre: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Pattern [https://docs.python.org/3/library/re.html#re.Pattern]] = None, join_char_replacement: str [https://docs.python.org/3/library/stdtypes.html#str] = '__', **fstr_params) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Prepare the target path within the data tree where the loader’s
output is to be placed.

The target_path argument can be a format string.
The following keys are available:

	dirname: the directory path relative to the selected base
directory (typically the data directory).

	basename: the lower-case base name of the file, without extension

	ext: the lower-case extension of the file, without leading dot

	relpath: The full (relative) path (without extension)

	dirname_cleaned and relpath_cleaned: like above but with the
path join character (/) replaced by join_char_replacement.

If path_sre is given, will additionally have the following keys
available as result of calling re.Pattern.search() [https://docs.python.org/3/library/re.html#re.Pattern.search] on the
given filepath:

	match: the first matched group, named or unnamed.
This is equivalent to groups[0].
If no match is made, will warn and fall back to the basename.

	groups: the sequence of matched groups; individual groups can be
accessed via the expanded formatting syntax, where {groups[1]:}
will access the second match.
Not available if there was no match.

	named: contains the matches for named groups; individual groups
can be accessed via {named[foo]:}, where foo is the name of
the group.
Not available if there was no match.

For more information on how to define named groups, refer to the
Python docs [https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups].

Hint

For more complex target path format strings, use the named
matches for higher robustness.

Examples (using path_regex instead of path_sre):

Without pattern matching
filepath: data/some_file.ext
target_path: target/{ext}/{basename} # -> target/ext/some_file

With simple pattern matching
path_regex: data/uni(\d+)/data.h5
filepath: data/uni01234/data.h5 # matches 01234
target_path: multiverse/{match}/data # -> multiverse/01234/data

With pattern matching that uses named groups
path_regex: data/no(?P<num>\d+)/data.h5
filepath: data/no123/data.h5 # matches 123
target_path: target/{named[num]} # -> target/123

	Parameters

	
	target_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The target path format() [https://docs.python.org/3/library/functions.html#format] string, which
may contain placeholders that are replaced in this method. For
instance, these placeholders may be those from the path regex
pattern specified in path_sre, see above.

	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The actual path of the file, used as input to the
regex pattern.

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base path used when determining the
filepath and from which a relative path can be computed.
Available as format keys relname and relname_cleaned.

	path_sre (Pattern [https://docs.python.org/3/library/re.html#re.Pattern], optional) – The regex pattern that is used to
generate additional arguments that are useable in the format
string.

	join_char_replacement (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The string to use to replace
the PATH_JOIN_CHAR (/) in the relative paths

	**fstr_params – Made available to the formatting operation

	Returns

	Path sequence that represents the target path within the
data tree where the loaded data is to be placed.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
_skip_path(path: str [https://docs.python.org/3/library/stdtypes.html#str], *, exists_action: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check whether a given path exists and — depending on the
exists_action – decides whether to skip this path or not.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to check for existence.

	exists_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – The behaviour upon existing data. Can be:
raise, skip, skip_nowarn,
overwrite, overwrite_nowarn.
The *_nowarn arguments suppress the warning.

	Returns

	Whether to skip this path

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	ExistingDataError – Raised when exists_action == ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised for invalid exists_action value

	
_store_object(obj: Union [https://docs.python.org/3/library/typing.html#typing.Union][BaseDataGroup, BaseDataContainer], *, target_path: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], as_attr: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], unpack_data: bool [https://docs.python.org/3/library/functions.html#bool], exists_action: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Store the given obj at the supplied target_path.

Note that this will automatically overwrite, assuming that all
checks have been made prior to the call to this function.

	Parameters

	
	obj (Union[BaseDataGroup, BaseDataContainer]) – Object to store

	target_path (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The path to store the object at

	as_attr (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None]) – If a string, store the object in
the attributes of the container or group at target_path

	unpack_data (bool [https://docs.python.org/3/library/functions.html#bool]) – Description

	exists_action (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description

	Returns

	
	Whether storing was successful. May be False in case the
	target path already existed and exists_action specifies
that it is to be skipped, or if the object was None.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	ExistingDataError – If non-group-like data already existed at
 that path

	RequiredDataMissingError – If storing as attribute was selected
 but there was no object at the given target_path

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_STORAGE_CLS

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_parse_file_path(path: str [https://docs.python.org/3/library/stdtypes.html#str], *, default_ext=None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Parses a file path: if it is a relative path, makes it relative to
the associated data directory. If a default extension is specified and
the path does not contain one, that extension is added.

This helper method is used as part of dumping and storing the data
tree, i.e. in the dump() and
restore() methods.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
dump(*, path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **dump_kwargs) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Dumps the data tree to a new file at the given path, creating any
necessary intermediate data directories.

For restoring, use restore().

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to store this file at. If this is
not given, use the default tree cache path that was set up
during initialization.
If it is given and a relative path, it is assumed relative to
the data directory.
If the path does not end with an extension, the .d3 (read:
“data tree”) extension is automatically added.

	**dump_kwargs – Passed on to pkl.dump

	Returns

	The path that was used for dumping the tree file

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
restore(*, from_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, merge: bool [https://docs.python.org/3/library/functions.html#bool] = False, **load_kwargs)

	Restores the data tree from a dump.

For dumping, use dump().

	Parameters

	
	from_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to restore this DataManager
from. If it is not given, uses the default tree cache path
that was set up at initialization.
If it is a relative path, it is assumed relative to the data
directory. Take care to add the corresponding file extension.

	merge (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, uses a recursive update to merge
the current tree with the restored tree.
If False, uses clear()
to clear the current tree and then re-populates it with the
restored tree.

	**load_kwargs – Passed on to pkl.load

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If no file is found at the (expanded) path.

dantro.exceptions module

Custom dantro exception classes.

	
exception DantroError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for all dantro-related errors

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DantroWarning

	Bases: UserWarning [https://docs.python.org/3/library/exceptions.html#UserWarning]

Base class for all dantro-related warnings

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DantroMessagingException

	Bases: dantro.exceptions.DantroError

Base class for exceptions that are used for messaging

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception UnexpectedTypeWarning

	Bases: dantro.exceptions.DantroWarning

Given when there was an unexpected type passed to a data container.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ItemAccessError(obj: AbstractDataContainer, *, key: str [https://docs.python.org/3/library/stdtypes.html#str], show_hints: bool [https://docs.python.org/3/library/functions.html#bool] = True, prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = None, suffix: str [https://docs.python.org/3/library/stdtypes.html#str] = None)

	Bases: KeyError [https://docs.python.org/3/library/exceptions.html#KeyError], IndexError [https://docs.python.org/3/library/exceptions.html#IndexError], dantro.exceptions.DantroError

Raised upon bad access via __getitem__ or similar magic methods.

This derives from both native exceptions KeyError and IndexError as these
errors may be equivalent in the context of the dantro data tree, which is
averse to the underlying storage container.

See BaseDataGroup for example usage.

	
__init__(obj: AbstractDataContainer, *, key: str [https://docs.python.org/3/library/stdtypes.html#str], show_hints: bool [https://docs.python.org/3/library/functions.html#bool] = True, prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = None, suffix: str [https://docs.python.org/3/library/stdtypes.html#str] = None)

	Set up an ItemAccessError object, storing some metadata that is
used to create a helpful error message.

	Parameters

	
	obj (AbstractDataContainer) – The object from which item access was
attempted but failed

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key with which __getitem__ was called

	show_hints (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show hints in the error
message, e.g. available keys or “Did you mean …?”

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A prefix string for the error message

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A suffix string for the error message

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Upon obj without attributes logstr and path;
 or key not being a string.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Parse an error message, using the additional information to give
hints on where the error occurred and how it can be resolved.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DataOperationWarning

	Bases: dantro.exceptions.DantroWarning

Base class for warnings related to data operations

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DataOperationError

	Bases: dantro.exceptions.DantroError

Base class for errors related to data operations

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception BadOperationName

	Bases: dantro.exceptions.DataOperationError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised upon bad data operation name

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DataOperationFailed

	Bases: dantro.exceptions.DataOperationError, RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised upon failure to apply a data operation

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MetaOperationError

	Bases: dantro.exceptions.DataOperationError

Base class for errors related to meta operations

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MetaOperationSignatureError

	Bases: dantro.exceptions.MetaOperationError

If the meta-operation signature was erroneous

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MetaOperationInvocationError

	Bases: dantro.exceptions.MetaOperationError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

If the invocation of the meta-operation was erroneous

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DAGError

	Bases: dantro.exceptions.DantroError

For errors in the data transformation framework

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingDAGReference

	Bases: dantro.exceptions.DAGError, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

If there was a missing DAG reference

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingDAGTag

	Bases: dantro.exceptions.MissingDAGReference, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised upon bad tag names

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingDAGNode

	Bases: dantro.exceptions.MissingDAGReference, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Raised upon bad node index

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DataManagerError

	Bases: dantro.exceptions.DantroError

All DataManager exceptions derive from this one

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception RequiredDataMissingError

	Bases: dantro.exceptions.DataManagerError

Raised if required data was missing.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingDataError

	Bases: dantro.exceptions.DataManagerError

Raised if data was missing, but is not required.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ExistingDataError

	Bases: dantro.exceptions.DataManagerError

Raised if data already existed.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ExistingGroupError

	Bases: dantro.exceptions.DataManagerError

Raised if a group already existed.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception LoaderError

	Bases: dantro.exceptions.DataManagerError

Raised if a data loader was not available

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception DataLoadingError

	Bases: dantro.exceptions.DataManagerError

Raised if loading data failed for some reason

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingDataWarning

	Bases: dantro.exceptions.DantroWarning

Used as warning instead of MissingDataError

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ExistingDataWarning

	Bases: dantro.exceptions.DantroWarning

If there was data already existing …

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception NoMatchWarning

	Bases: dantro.exceptions.DantroWarning

If there was no regex match

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception PlottingError

	Bases: dantro.exceptions.DantroError

Custom exception class for all plotting errors

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception PlotConfigError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], dantro.exceptions.PlottingError

Raised when there were errors in the plot configuration

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception InvalidCreator

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], dantro.exceptions.PlottingError

Raised when an invalid creator was specified

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception PlotCreatorError

	Bases: dantro.exceptions.PlottingError

Raised when an error occured in a plot creator

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception SkipPlot(what: str [https://docs.python.org/3/library/stdtypes.html#str] = '')

	Bases: dantro.exceptions.DantroMessagingException

A custom exception class that denotes that a plot is to be skipped.

This is typically handled by the PlotManager
and can thus be raised anywhere below it: in the plot creators, in the
user-defined plotting functions, …

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception EnterAnimationMode

	Bases: dantro.exceptions.DantroMessagingException

An exception that is used to convey to any
PyPlotCreator or derived
creator that animation mode is to be entered instead of a regular
single-file plot.

It can and should be invoked via
enable_animation().

This exception can be raised from within a plot function to dynamically
decide whether animation should happen or not. Its counterpart is
ExitAnimationMode.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception ExitAnimationMode

	Bases: dantro.exceptions.DantroMessagingException

An exception that is used to convey to any
PyPlotCreator or derived
creator that animation mode is to be exited and a regular single-file plot
should be carried out.

It can and should be invoked via
disable_animation().

This exception can be raised from within a plot function to dynamically
decide whether animation should happen or not. Its counterpart is
ExitAnimationMode.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception PlotHelperError(upstream_error: Exception [https://docs.python.org/3/library/exceptions.html#Exception], *, name: str [https://docs.python.org/3/library/stdtypes.html#str], params: dict [https://docs.python.org/3/library/stdtypes.html#dict], ax_coords: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = None)

	Bases: dantro.exceptions.PlotConfigError

Raised upon failure to invoke a specific plot helper function, this
custom exception type stores metadata on the helper invocation in order
to generate a useful error message.

	
__init__(upstream_error: Exception [https://docs.python.org/3/library/exceptions.html#Exception], *, name: str [https://docs.python.org/3/library/stdtypes.html#str], params: dict [https://docs.python.org/3/library/stdtypes.html#dict], ax_coords: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = None)

	Initializes a PlotHelperError

	
__str__()

	Generates an error message for this particular helper

	
property docstring: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the docstring of this helper function

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception PlotHelperErrors(*errors, show_docstrings: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

This custom exception type gathers multiple individual instances of
PlotHelperError.

	
__init__(*errors, show_docstrings: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Bundle multiple PlotHelperErrors together

	Parameters

	
	*errors – The individual instances of
PlotHelperError

	show_docstrings (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to show docstrings in the
error message.

	
property errors

	

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Generates a combined error message for all registered errors

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingRegistryEntry

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], IndexError [https://docs.python.org/3/library/exceptions.html#IndexError], KeyError [https://docs.python.org/3/library/exceptions.html#KeyError], dantro.exceptions.DantroError

An error that is raised when trying to access an entry in
ObjectRegistry that does not exist.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception MissingNameError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], dantro.exceptions.DantroError

An error that is raised when a name is required but was not given for
ObjectRegistry registration.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception RegistryEntryExists

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], dantro.exceptions.DantroError

An error that is raised when trying to set an entry in
ObjectRegistry that already exist.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception InvalidRegistryEntry

	Bases: TypeError [https://docs.python.org/3/library/exceptions.html#TypeError], ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], dantro.exceptions.DantroError

An error that is raised when trying to set an invalid entry in
ObjectRegistry.

	
args

	

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

dantro.logging module

Configures the DantroLogger for the whole package

	
class DantroLogger(name, level=0)

	Bases: logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

The custom dantro logging class with additional log levels

	
trace(msg, *args, **kwargs)

	

	
remark(msg, *args, **kwargs)

	

	
note(msg, *args, **kwargs)

	

	
progress(msg, *args, **kwargs)

	

	
caution(msg, *args, **kwargs)

	

	
hilight(msg, *args, **kwargs)

	

	
success(msg, *args, **kwargs)

	

	
_log(level, msg, args, exc_info=None, extra=None, stack_info=False, stacklevel=1)

	Low-level logging routine which creates a LogRecord and then calls
all the handlers of this logger to handle the record.

	
addFilter(filter)

	Add the specified filter to this handler.

	
addHandler(hdlr)

	Add the specified handler to this logger.

	
callHandlers(record)

	Pass a record to all relevant handlers.

Loop through all handlers for this logger and its parents in the
logger hierarchy. If no handler was found, output a one-off error
message to sys.stderr. Stop searching up the hierarchy whenever a
logger with the “propagate” attribute set to zero is found - that
will be the last logger whose handlers are called.

	
critical(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

	
debug(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

	
error(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

	
exception(msg, *args, exc_info=True, **kwargs)

	Convenience method for logging an ERROR with exception information.

	
fatal(msg, *args, **kwargs)

	Don’t use this method, use critical() instead.

	
filter(record)

	Determine if a record is loggable by consulting all the filters.

The default is to allow the record to be logged; any filter can veto
this and the record is then dropped. Returns a zero value if a record
is to be dropped, else non-zero.

Changed in version 3.2: Allow filters to be just callables.

	
findCaller(stack_info=False, stacklevel=1)

	Find the stack frame of the caller so that we can note the source
file name, line number and function name.

	
getChild(suffix)

	Get a logger which is a descendant to this one.

This is a convenience method, such that

logging.getLogger(‘abc’).getChild(‘def.ghi’)

is the same as

logging.getLogger(‘abc.def.ghi’)

It’s useful, for example, when the parent logger is named using
__name__ rather than a literal string.

	
getEffectiveLevel()

	Get the effective level for this logger.

Loop through this logger and its parents in the logger hierarchy,
looking for a non-zero logging level. Return the first one found.

	
handle(record)

	Call the handlers for the specified record.

This method is used for unpickled records received from a socket, as
well as those created locally. Logger-level filtering is applied.

	
hasHandlers()

	See if this logger has any handlers configured.

Loop through all handlers for this logger and its parents in the
logger hierarchy. Return True if a handler was found, else False.
Stop searching up the hierarchy whenever a logger with the “propagate”
attribute set to zero is found - that will be the last logger which
is checked for the existence of handlers.

	
info(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

	
isEnabledFor(level)

	Is this logger enabled for level ‘level’?

	
log(level, msg, *args, **kwargs)

	Log ‘msg % args’ with the integer severity ‘level’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.log(level, “We have a %s”, “mysterious problem”, exc_info=1)

	
makeRecord(name, level, fn, lno, msg, args, exc_info, func=None, extra=None, sinfo=None)

	A factory method which can be overridden in subclasses to create
specialized LogRecords.

	
manager = <logging.Manager object>

	

	
removeFilter(filter)

	Remove the specified filter from this handler.

	
removeHandler(hdlr)

	Remove the specified handler from this logger.

	
root = <RootLogger root (WARNING)>

	

	
setLevel(level)

	Set the logging level of this logger. level must be an int or a str.

	
warn(msg, *args, **kwargs)

	

	
warning(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with
a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

dantro.plot_mngr module

Implements the PlotManager, which handles the
configuration of multiple plots and prepares the data and configuration to pass
to the respective plot creators.
See the user manual for more information.

	
_fmt_time(seconds)

	

	
BAD_PLOT_NAME_CHARS = ('*', '?', '[', ']', '!', ':', '(', ')', '\\', '.')

	Substrings that may not appear in plot names.

Unlike the BAD_NAME_CHARS, these allow the / char
(such that new directories can be created) and disallows the . character
(in order to not get confused with file extensions).

	
BASE_PLOTS_CFG_PATH: str [https://docs.python.org/3/library/stdtypes.html#str] = '/home/docs/checkouts/readthedocs.org/user_builds/dantro/checkouts/v0.19.5/dantro/cfg/base_plots.yml'

	The path to the base plot configurations pool for dantro.

If the use_dantro_base_cfg_pool flag is set when initializing a
PlotManager, this file will be used as the first
entry in the sequence of config pools.

Also see dantro base plot configuration pool for more information.

	
class PlotManager(*, dm: DataManager, default_plots_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, out_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = '{timestamp:}/', base_cfg_pools: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = (), use_dantro_base_cfg_pool: bool [https://docs.python.org/3/library/functions.html#bool] = True, out_fstrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, plot_func_resolver_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, shared_creator_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, creator_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, default_creator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, save_plot_cfg: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = False, cfg_exists_action: str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The PlotManager takes care of configuring plots and calling the
selected plot creators that then actually carry out
the plotting operation.

It is a high-level class that is aware of a larger plot configuration and
aggregates all general capabilities needed to configure and carry out plots
using the plotting framework.

See the user manual for more information.

	
PLOT_FUNC_RESOLVER

	The class to use for resolving plot function objects

alias of dantro.plot.utils.plot_func.PlotFuncResolver

	
CREATORS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = {'base': <class 'dantro.plot.creators.base.BasePlotCreator'>, 'external': <class 'dantro.plot.creators.pyplot.PyPlotCreator'>, 'multiverse': <class 'dantro.plot.creators.psp.MultiversePlotCreator'>, 'pyplot': <class 'dantro.plot.creators.pyplot.PyPlotCreator'>, 'universe': <class 'dantro.plot.creators.psp.UniversePlotCreator'>}

	The mapping of creator names to classes.
By default, all available dantro plot creators are registered.

When subclassing PlotManager and desiring to extend the creator mapping,
use dict(**dantro.plot.creators.ALL, my_new_creator=MyNewCreator)
to include the default creator mapping.

	
DEFAULT_OUT_FSTRS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'path': '{name:}{ext:}', 'plot_cfg': '{basename:}_cfg.yml', 'plot_cfg_sweep': '{name:}/sweep_cfg.yml', 'state': '{name:}_{val:}', 'state_join_char': '__', 'state_name_replace_chars': [], 'state_no': '{no:0{digits:d}d}', 'state_val_replace_chars': [('/', '-')], 'state_vector_join_char': '-', 'sweep': '{name:}/{state_no:}__{state:}{ext:}', 'timestamp': '%y%m%d-%H%M%S'}

	The default values for the output format strings, used when composing
the file name of a plot.

	
SPECIAL_BASE_CFG_POOL_LABELS: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('plot', 'plot_from_cfg', 'plot_from_cfg_unused', 'plot_pspace')

	Special keys that may not be used as labels for the base configuration
pools.

	
__init__(*, dm: DataManager, default_plots_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, out_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = '{timestamp:}/', base_cfg_pools: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = (), use_dantro_base_cfg_pool: bool [https://docs.python.org/3/library/functions.html#bool] = True, out_fstrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, plot_func_resolver_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, shared_creator_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, creator_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, default_creator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, save_plot_cfg: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = False, cfg_exists_action: str [https://docs.python.org/3/library/stdtypes.html#str] = 'raise')

	Initialize a PlotManager, which provides a uniform configuration
interface for creating plots and passes tasks on to the respective
plot creators.

To avoid copy-paste of plot configurations, the PlotManager comes with
versatile capabilities to define default plots and re-use other plots.

	The default_plots_cfg specifies plot configurations that are
to be carried out by default when calling the plotting method
plot_from_cfg().

	When calling any of the plot methods plot_from_cfg() or
plot(), there is the possibility to update the existing
configuration dict with new entries.

	At each stage, the based_on feature allows to make a plot
configuration inherit entries from an existing configuration.
These are looked up from the base_cfg_pools following the
rules described in resolve_based_on().

For more information on how the plot configuration can be defined, see
Plot Configuration Inheritance.

	Parameters

	
	dm (DataManager) – The DataManager-derived object to read the plot
data from.

	default_plots_cfg (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The default plots
config or a path to a YAML file to import. Used as defaults
when calling plot_from_cfg()

	out_dir (Union[str [https://docs.python.org/3/library/stdtypes.html#str], None], optional) – If given, will use this
output directory as basis for the output path for each plot.
The path can be a format-string; it is evaluated upon call to
the plot command. Available keys: timestamp, name, …
For a relative path, this will be relative to the DataManager’s
output directory. Absolute paths remain absolute.
If this argument evaluates to False, the DataManager’s output
directory will be the output directory.

	base_cfg_pools (Sequence[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]]], optional) – The base configuration pools are used to perform the lookups of
based_on entries, see Plot Configuration Inheritance.
The tuples in these sequence consist of (label, plots_cfg)
pairs and are fed to add_base_cfg_pool(); see there
for more information.

	use_dantro_base_cfg_pool (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If set, will use
dantro’s own base plot configuration pool as the first entry
in the pool sequence. Refer to the
corresponding documentation page
for more information on available entries.

	out_fstrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Format strings that define how the
output path is generated. The dict given here updates the
DEFAULT_OUT_FSTRS class variable which holds the
default values.

Keys: timestamp (%-style), path, sweep, state,
plot_cfg, state, state_no, state_join_char,
state_vector_join_char.

Available keys for path: name, timestamp, ext.

	Additionally, for sweep: state_no, state_vector,
	state.

	plot_func_resolver_init_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Initialization
arguments for the plot function resolver, by default
PlotFuncResolver.

	shared_creator_init_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Initialization
arguments to the plot creator that are passed to all creators
regardless of type (in contrast to creator_init_kwargs).

	creator_init_kwargs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – If given, these
kwargs are passed to the initialization calls of the respective
creator classes. These are resolved by the names given in the
CREATORS class variable and are passed to the
BasePlotCreator or the
respective derived class.

	default_creator (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, a plot without explicit
creator declaration will use this creator as default.

	save_plot_cfg (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the plot configuration is
saved to a yaml file alongside the created plot.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if there
are errors raised from the plot creator or errors in the plot
configuration. If False, the errors will only be logged.

	cfg_exists_action (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Behaviour when a config file
already exists. Can be: raise (default), skip,
append, overwrite, or overwrite_nowarn.

	
property out_fstrs: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	The dict of output format strings

	
property plot_info: List[dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	A list of dicts with info on all plots carried out so far

	
property base_cfg_pools: OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	The base plot configuration pools, used for lookup the based_on
entry in plot configurations.

The order of the entries in the pool is relevant, with later entries
taking precedence over previous ones. See Plot Configuration Inheritance
for a more detailed description.

	
property default_creator: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of the default creator

	
add_base_cfg_pool(*, label: str [https://docs.python.org/3/library/stdtypes.html#str], plots_cfg: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]])

	Adds a base configuration pool entry, allowing for the plots_cfg
to be a path to a YAML configuration file which is then loaded.

The new pool is used for based_on lookups and takes precedence over
existing entries. For more information on lookup rules, see
resolve_based_on() and
Plot Configuration Inheritance.

	Parameters

	
	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – A label of the pool that is used for identifying it.

	plots_cfg (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Description

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If label already exists or is a special label.

	
static _prepare_cfg(s: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Prepares a plots configuration by either loading it from a YAML file
if the given argument is a string or returning a deep copy of the given
dict-like object.

	
_handle_exception(exc: Exception, *, pc: dantro.plot.creators.base.BasePlotCreator, debug: typing.Optional[bool] = None, ExcCls: type = <class 'dantro.exceptions.PlottingError'>)

	Helper for handling exceptions from the plot creator

	
_parse_out_dir(fstr: str [https://docs.python.org/3/library/stdtypes.html#str], *, name: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Evaluates the format string to create an output directory path.

Note that the directories are _not_ created; this is outsourced to the
plot creator such that it happens as late as possible.

	Parameters

	
	fstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The format string to evaluate and create a directory at

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the plot

	timestamp (float [https://docs.python.org/3/library/functions.html#float], optional) – Description

	Returns

	The path of the created directory

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_parse_out_path(creator: BasePlotCreator, *, name: str [https://docs.python.org/3/library/stdtypes.html#str], out_dir: str [https://docs.python.org/3/library/stdtypes.html#str], file_ext: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, state_no: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, state_no_max: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, state_vector: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]] = None, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a creator and (optionally) parameter sweep information, a full
and absolute output path is generated, including the file extension.

Note that the directories are _not_ created; this is outsourced to the
plot creator such that it happens as late as possible.

	Parameters

	
	creator (BasePlotCreator) – The creator instance, used to
extract information on the file extension.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the plot

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute output directory, prepended to all
generated paths

	file_ext (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The file extension to use

	state_no (int [https://docs.python.org/3/library/functions.html#int], optional) – The state number, starting with 0

	state_no_max (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum state number

	state_vector (Tuple[int [https://docs.python.org/3/library/functions.html#int]], optional) – The state vector with info
on how far each state dimension has progressed in the sweep

	dims (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The dict of parameter dimensions of the
sweep that is carried out.

	Returns

	The fully parsed output path for this plot

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_check_plot_name(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Raises if a plot name contains bad characters

	
_get_plot_func(**resolver_kwargs) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Instantiates a plot function resolver,
PlotFuncResolver, and uses
it to get the desired plot function callable.

	
_get_plot_func_resolver(**init_kwargs) → PlotFuncResolver

	Instantiates the plot function resolver object with the given
initialization arguments.

This method is called from _get_plot_func() and can be used
for more conveniently controlling how the resolver is set up.
By default, the init_kwargs will be equivalent to the
plot_func_resolver_init_kwargs given to __init__().

	
_get_plot_creator(*, creator: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]], plot_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], name: str [https://docs.python.org/3/library/stdtypes.html#str], init_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → BasePlotCreator

	Determines which plot creator to use by looking at the given
arguments and the plotting function.

Then, sets up the corresponding creator and returns it.

This method is called from _plot().

	Parameters

	
	creator (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – The name of the creator to be
looked up in CREATORS. Can also be None, in
which case it is attempted to look it up from the plot_func
‘s creator attribute. If that was not possible either, the
default_creator is used. If a callable is given,
will use that as a factory to construct the creator instance.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name that will be used for the plot creator,
typically the plot name itself.

	init_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional creator initialization parameters

	Returns

	The selected creator object, fully initialized.

	Return type

	BasePlotCreator

	
_invoke_plot_creation(plot_creator: BasePlotCreator, *, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], debug: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **plot_cfg) → Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]

	This method wraps the plot creator’s __call__ and is the last
PlotManager method that is called prior to handing over to the selected
plot creator. It takes care of invoking the plot creator’s __call__
method and handling potential error messages and return values.

	Parameters

	
	plot_creator (BasePlotCreator) – The currently used creator object

	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The plot output path

	debug (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, this overwrites the raise_exc
option specified during initialization.

	**plot_cfg – The plot configuration

	Returns

	
	Whether the plot was carried out successfully.
	Returns the string 'skipped' if the plot was skipped via a
SkipPlot exception.

	Return type

	Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	PlotCreatorError – On error within the plot creator. This is only
 raised if either debug is True or
 debug is None and self.raise_exc. Otherwise, the error
 message is merely logged.

	
_store_plot_info(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], plot_cfg_extras: dict [https://docs.python.org/3/library/stdtypes.html#dict], creator_name: str [https://docs.python.org/3/library/stdtypes.html#str], save: bool [https://docs.python.org/3/library/functions.html#bool], target_dir: str [https://docs.python.org/3/library/stdtypes.html#str], part_of_sweep: bool [https://docs.python.org/3/library/functions.html#bool] = False, **info)

	Stores all plot information in the plot_info list and, if save
is set, also saves it using _save_plot_cfg().

	
_save_plot_cfg(cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, name: str [https://docs.python.org/3/library/stdtypes.html#str], target_dir: str [https://docs.python.org/3/library/stdtypes.html#str], exists_action: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, is_sweep: bool [https://docs.python.org/3/library/functions.html#bool] = False, **plot_cfg_extras) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Saves the given configuration under the top-level entry name to
a yaml file.

	Parameters

	
	cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The plot configuration to save

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the plot

	target_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory path to store the file in

	exists_action (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – What to do if a plot configuration
already exists. Can be: overwrite, overwrite_nowarn,
skip, append, raise. If None, uses the value of the
cfg_exists_action argument given during initialization.

	is_sweep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Set if the configuration refers to a
plot in sweep mode, for which a different format string is used

	**plot_cfg_extras – Added to the plot configuration via recursive
update.

	Returns

	The path the config was saved at (mainly used for testing)

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For invalid exists_action argument

	
plot_from_cfg(*, plots_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, plot_only: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, out_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, resolve_based_on: bool [https://docs.python.org/3/library/functions.html#bool] = True, **update_plots_cfg) → None [https://docs.python.org/3/library/constants.html#None]

	Create multiple plots from a configuration, either a given one or
the one passed during initialization.

This is mostly a wrapper around the plot function, allowing additional
ways of how to configure and create plots.

	Parameters

	
	plots_cfg (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The plots configuration to
use. If not given, the default_plots_cfg specified during
initialization is used. If a string is given, will assume it
is a path and load the file.

	plot_only (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, create only those plots
from the resulting configuration that match these names. This
will lead to the enabled key being ignored, regardless of its
value. The strings given here may also include Unix shell-like
wildcards like * and ? ``, which are matched using the
Python ``fnmatch module.

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A different output directory; will use the
one passed at initialization if the given argument evaluates to
False.

	resolve_based_on (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to resolve the
based_on entries in plots_cfg here. If false, will
postpone this to plot(),
thus not including the rest of the plots_cfg in the base
configuration pool for name resolution.
Lookups happen from base_cfg_pools following the rules
described in resolve_based_on().

	**update_plots_cfg – If given, it is used to update the plots_cfg
recursively. Note that on the top level the _names_ of the
plots are placed; this cannot be used to make all plots have a
common property. Furthermore, this update happens before the
based_on entries are resolved.

	Raises

	
	PlotConfigError – Empty or invalid plot configuration

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Bad plot_only argument, e.g. not matching any of
 the available plot names.

	
plot(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, based_on: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, from_pspace: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]] = None, **plot_cfg) → BasePlotCreator

	Create plot(s) from a single configuration entry.

A call to this function resolves the based_on feature and passes
the derived plot configuration to _plot(), which actually
carries out the plotting. See there for documentation of further
arguments.

Note that more than one plot can result from a single configuration
entry, e.g. when plots were configured that have more dimensions than
representable in a single file.

For

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this plot. This will be used for generating
an output file path later on. Some characters are not allowed,
e.g. * and ?, but a / can be used to store the plot
output in a subdirectory.

	based_on (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – A key or a sequence
of keys of entries in the base pool that should be used as
the basis of this plot. The given plot configuration is then
used to recursively update (a copy of) those base
configuration entries.
Lookups happen from base_cfg_pools following the rules
described in resolve_based_on().

	from_pspace (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]], optional) – If given, execute a parameter sweep over these parameters,
re-using the same creator instance. If this is a dict, a
ParamSpace is created from it.

	**plot_cfg – The plot configuration, including some parameters that
the plot manager will evaluate (and consequently: does not
pass on to the plot creator).
If using from_pspace, parameters given here will
recursively update those given in from_pspace.

	Returns

	The PlotCreator used for these plots

	Return type

	BasePlotCreator

	
_plot(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, plot_func: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, module: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, module_file: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, creator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, out_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, default_out_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, file_ext: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, save_plot_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, creator_init_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, from_pspace: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **plot_cfg) → BasePlotCreator

	Create plot(s) from a single configuration entry.

This first resolves the plot function using the plot function resolver
class: PlotFuncResolver or a
derived class (depending on the PLOT_FUNC_RESOLVER).

A call to this function creates a plot creator,
which is also returned after all plots are finished.

Note that more than one plot can result from a single configuration
entry, e.g. when plots were configured that have more dimensions than
representable in a single file or when using from_pspace.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this plot

	plot_func (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – The name or module
string of the plot function as it can be imported from
module. If this is a callable will directly return that
callable. This argument needs be given.

	module (str [https://docs.python.org/3/library/stdtypes.html#str]) – If plot_func was the name of the plot
function, this needs to be the name of the module to import
that name from.

	module_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to load and look for
the plot_func in. If base_module_file_dir is given
during initialization, this can also be a path relative to that
directory.

	creator (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – The name of the creator to
be looked up in CREATORS. Can also be None, in
which case it is attempted to look it up from the plot_func
‘s creator attribute. If that was not possible either, the
default_creator is used. If a callable is given,
will use that as a factory to set up the creator.

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, will use this directory as out
directory. If not, will use the default value given by
default_out_dir or that given at initialization.

	default_out_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – An output directory that was
determined in the calling context and which should be used as
default if no out_dir was given explicitly.

	file_ext (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The file extension to use, including the
leading dot!

	save_plot_cfg (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to save the plot config.
If not given, uses the default value from initialization.

	creator_init_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to the plot creator
during initialization. Note that the arguments given at
initialization of the PlotManager are updated by this.

	from_pspace (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, execute a parameter
sweep over this parameter space, re-using the same creator
instance. Each point in parameter space will end up calling
this method with arguments unpacked to the plot_cfg
argument.

	**plot_cfg – The plot configuration to pass on to the plot creator.
This may be completely empty if from_pspace is used!

	Returns

	
	The PlotCreator used for these plots. This will
	also be returned in case the plot failed!

	Return type

	BasePlotCreator

	Raises

	
	PlotConfigError – If no out directory was specified here or at
 initialization.

	PlotCreatorError – In case the preparation or execution of the plot
 failed for whatever reason. Not raised if not in debug mode.

dantro.tools module

This module implements tools that are generally useful in dantro

	
TERMINAL_INFO = {'columns': 80, 'is_a_tty': False, 'lines': 24}

	Holds information about the size and properties of the used terminal.

Warning

Do not update this manually, call update_terminal_info() instead.

	
update_terminal_info() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Updates the TERMINAL_INFO constant with information about the
number of columns, lines, and whether the terminal is a TTY terminal.

If retrieving the properties via shutil.get_terminal_size() [https://docs.python.org/3/library/shutil.html#shutil.get_terminal_size] fails
for whatever reason, will not apply any changes.

	
IS_A_TTY = False

	Whether the used terminal is a TTY terminal

Deprecated since version v0.18: Use the dantro.tools.TERMINAL_INFO["is_a_tty"] entry instead.

	
TTY_COLS = 80

	Number of columns in a TTY terminal

Deprecated since version v0.18: Use the dantro.tools.TERMINAL_INFO["columns"] entry instead.

	
recursive_update(d: dict [https://docs.python.org/3/library/stdtypes.html#dict], u: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Recursively updates the Mapping-like object d with the Mapping-like
object u and returns it. Note that this does not create a copy of
d, but changes it mutably!

Based on: http://stackoverflow.com/a/32357112/1827608

	Parameters

	
	d (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The mapping to update

	u (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The mapping whose values are used to update d

	Returns

	The updated dict d

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
recursive_getitem(obj: Union [https://docs.python.org/3/library/typing.html#typing.Union][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]], keys: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence])

	Go along the sequence of keys through obj and return the target
item.

	Parameters

	
	obj (Union[Mapping, Sequence]) – The object to get the item from

	keys (Sequence) – The sequence of keys to follow

	Returns

	The target item from obj, specified by keys

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any index or key in the key sequence was not available

	
clear_line(only_in_tty=True, break_if_not_tty=True)

	Clears the current terminal line and resets the cursor to the first
position using a POSIX command.

Based on: https://stackoverflow.com/a/25105111/1827608

	Parameters

	
	only_in_tty (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (default) will only clear the
line if the script is executed in a TTY

	break_if_not_tty (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (default), will insert a
line break if the script is not executed in a TTY

	
fill_line(s: str [https://docs.python.org/3/library/stdtypes.html#str], *, num_cols: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, fill_char: str [https://docs.python.org/3/library/stdtypes.html#str] = ' ', align: str [https://docs.python.org/3/library/stdtypes.html#str] = 'left') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Extends the given string such that it fills a whole line of num_cols
columns.

	Parameters

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to extend to a whole line

	num_cols (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of colums of the line; defaults to
the number of terminal columns.

	fill_char (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The fill character

	align (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The alignment. Can be: ‘left’, ‘right’, ‘center’
or the one-letter equivalents.

	Returns

	The string of length num_cols

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – For invalid align or fill_char argument

	
print_line(s: str [https://docs.python.org/3/library/stdtypes.html#str], *, end='\r', **kwargs)

	Wrapper around fill_line() that also prints
a line with carriage return (without new line) as end character. This is
useful for progress report lines that overwrite the previously printed
content repetitively.

	
center_in_line(s: str [https://docs.python.org/3/library/stdtypes.html#str], *, num_cols: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, fill_char: str [https://docs.python.org/3/library/stdtypes.html#str] = '·', spacing: int [https://docs.python.org/3/library/functions.html#int] = 1) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Shortcut for a common fill_line use case.

	Parameters

	
	s (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string to center in the line

	num_cols (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of columns in the line,
automatically determined if not given

	fill_char (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The fill character

	spacing (int [https://docs.python.org/3/library/functions.html#int], optional) – The spacing around the string s

	Returns

	The string centered in the line

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
make_columns(items: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], *, wrap_width: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = ' {item:<{width:}s} ') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a sequence of string items, returns a string with these items
spread out over several columns. Iteration is first within the row and
then into the next row.

The number of columns is determined automatically from the wrap width, the
length of the longest item in the items list, and the length of the
evaluated format string.

	Parameters

	
	items (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The string items to represent in columns.

	wrap_width (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum width of each full row. If not
given will determine it automatically

	fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string to use. Needs to accept the
keys item and width, the latter of which will be used for
padding. The format string should lead to strings of equal length,
otherwise the column layout will be messed up!

	
decode_bytestrings(obj) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Checks whether the given attribute value is or contains byte
strings and if so, decodes it to a python string.

	Parameters

	obj – The object to try to decode into holding python strings

	Returns

	Either the unchanged object or the decoded one

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
DoNothingContext

	An alias for a context … that does nothing

	
ensure_dict(d: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Makes sure that d is a dict and not None

	
is_iterable(obj) → bool [https://docs.python.org/3/library/functions.html#bool]

	Tries whether the given object is iterable.

	
is_hashable(obj) → bool [https://docs.python.org/3/library/functions.html#bool]

	Tries whether the given object is hashable.

	
try_conversion(c: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Given a string, attempts to convert it to a numerical value or a bool.

	
parse_str_to_args_and_kwargs(s: str [https://docs.python.org/3/library/stdtypes.html#str], *, sep: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parses strings like 65,0,sep=12 into a positional arguments list
and a keyword arguments dict.

Behavior:

	Positional arguments are all arguments that do not include =.
Keyword arguments are those that do include =.

	Will use try_conversion() to convert argument values.

	Trailing and leading white space on argument names and values is stripped
away using strip() [https://docs.python.org/3/library/stdtypes.html#str.strip].

Warning

	Cannot handle string arguments that include sep or =!

	Cannot handle arguments that define lists, tuples or other more
complex objects.

Hint

For more complex argument parsing, consider using a YAML parser
instead of this (rather simple) function!

	
class adjusted_log_levels(*new_levels: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A context manager that temporarily adjusts log levels

	
__enter__()

	When entering the context, sets these levels

	
__exit__(*_)

	When leaving the context, resets the levels to their old state

	
total_bytesize(files: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) → int [https://docs.python.org/3/library/functions.html#int]

	Returns the total size of a list of files

	
format_bytesize(num: int [https://docs.python.org/3/library/functions.html#int], *, precision: int [https://docs.python.org/3/library/functions.html#int] = 1) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Formats a size in bytes to a human readable (binary) format.

Stripped down from https://stackoverflow.com/a/63839503/1827608 .

	Parameters

	
	num (int [https://docs.python.org/3/library/functions.html#int]) – Number of bytes

	precision (int [https://docs.python.org/3/library/functions.html#int], optional) – The decimal precision to use, can be 0..3

	Returns

	The formatted, human-readable byte size

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_time(duration: Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]], *, ms_precision: int [https://docs.python.org/3/library/functions.html#int] = 0, max_num_parts: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Given a duration (in seconds), formats it into a string.

The formatting divisors are: days, hours, minutes, seconds

If ms_precision > 0 and duration < 60, decimal places will be shown
for the seconds.

	Parameters

	
	duration (Union[float [https://docs.python.org/3/library/functions.html#float], timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta]]) – The duration in seconds
to format into a duration string; it can also be a timedelta
object.

	ms_precision (int [https://docs.python.org/3/library/functions.html#int], optional) – The precision of the seconds slot

	max_num_parts (int [https://docs.python.org/3/library/functions.html#int], optional) – How many parts to include when creating
the formatted time string. For example, if the time consists of
the parts seconds, minutes, and hours, and the argument is 2,
only the hours and minutes parts will be shown, thus reducing the
precision of the overall representation of duration.
If None, all parts are included.

	Returns

	The formatted duration string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
glob_paths(glob_str: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, ignore: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, base_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, sort: bool [https://docs.python.org/3/library/functions.html#bool] = False, recursive: bool [https://docs.python.org/3/library/functions.html#bool] = True, include_files: bool [https://docs.python.org/3/library/functions.html#bool] = True, include_directories: bool [https://docs.python.org/3/library/functions.html#bool] = True) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Generates a list of paths from a glob string and a number of additional
options.

Paths may refer to file and directory paths.
Uses glob.glob() [https://docs.python.org/3/library/glob.html#glob.glob] for matching glob strings.

Note

Internally, this uses a set, thus ensuring that there are no duplicate
paths in the returned list.

	Parameters

	
	glob_str (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The glob pattern or a list of
glob patterns to use for searching for files. Relative paths will
be seen as relative to base_path.

	ignore (List[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of paths to ignore. Relative paths will be
seen as relative to base_path. Supports glob patterns.

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The base path for the glob pattern. If not
given, will use the current working directory.

	sort (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, sorts the list before returning.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will activate recursive glob
patterns (see glob.glob() [https://docs.python.org/3/library/glob.html#glob.glob]).

	include_files (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will remove file paths from
the set of paths.

	include_directories (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will remove directory
paths from the set of paths.

	Returns

	The file or directory paths that matched glob_str and were not
filtered out by the other options.

	Return type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the given base_path was not absolute.

	
class PoolCallbackHandler(n_max: int [https://docs.python.org/3/library/functions.html#int], *, silent: bool [https://docs.python.org/3/library/functions.html#bool] = False, fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = ' Loaded {n}/{n_max} .')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple callback handler for multiprocessing pools

	
__init__(n_max: int [https://docs.python.org/3/library/functions.html#int], *, silent: bool [https://docs.python.org/3/library/functions.html#bool] = False, fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = ' Loaded {n}/{n_max} .')

	
	Parameters

	
	n_max (int [https://docs.python.org/3/library/functions.html#int]) – Number of tasks

	silent (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will not print a message

	fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the status message.
May contain keys n and n_max.

	
class PoolErrorCallbackHandler

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A simple callback handler for errors in multiprocessing pools

	
track_error(error: Exception [https://docs.python.org/3/library/exceptions.html#Exception])

	

	
property errors: Set[Exception [https://docs.python.org/3/library/exceptions.html#Exception]]

	

dantro.containers package

Implements BaseDataContainer specializations.

isort:skip_file

Submodules

dantro.containers._registry module

Implements a registry for dantro container types based on
ObjectRegistry.

	
class ContainerRegistry

	Bases: dantro._registry.ObjectRegistry

	
_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'container'

	A description string for the entries of this registry

	
_SKIP: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for skip_existing argument

	
_OVERWRITE: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Default behavior for overwrite_existing argument

	
_EXPECTED_TYPE: Optional[Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], type [https://docs.python.org/3/library/functions.html#type]]] = (<class 'type'>,)

	If set, will check for expected types

	
_check_object(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Checks whether the object is valid.

	
_register_via_decorator(obj: type [https://docs.python.org/3/library/functions.html#type], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kws)

	Performs the registration operations when the decorator is used to
register an object.

	
__contains__(obj_or_key: Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given argument is part of the keys or values of this
registry.

	
_decorator(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Method that can be used as a decorator for registering objects
with this registry.

	Parameters

	
	arg (Union[Any, str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name that should be used or
the object that is to be added. If not a string, this refers
to the @is_container call syntax

	**kws – Passed to register()

	
_determine_name(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Determines the object name, using a potentially given name

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property desc: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
items()

	

	
keys()

	

	
register(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, skip_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, overwrite_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an entry to the registry.

	Parameters

	
	obj (Any) – The object to add to the registry.

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name to use. If not given, will
deduce a name from the given object.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if an
object of that name already exists. If None, the classes
default behavior (see _SKIP) is used.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite an
entry if an object with that name already exists. If None, the
classes default behavior (see _OVERWRITE)
is used.

	
values()

	

	
CONTAINERS = <dantro.containers._registry.ContainerRegistry object>

	The dantro data container registry object.

	
register_container(Cls: type [https://docs.python.org/3/library/functions.html#type], name: str [https://docs.python.org/3/library/stdtypes.html#str], *, skip_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Adds an entry to the shared container registry.

	Parameters

	
	Cls (type [https://docs.python.org/3/library/functions.html#type]) – The class that is to be registered as a container.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to use for registration.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if the
container name is already registered. This suppresses the
ValueError raised on existing container name.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite a potentially
already existing container of the same name. If set, this takes
precedence over skip_existing.

	
is_container(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Decorator for registering containers with the container type registry.

As an alternative to register_container(), this decorator can be
used to register a container right where its defined:

from dantro.containers import BaseDataContainer, is_container

Container name deduced from class name
@is_container
class MyDataContainer(BaseDataContainer):
 # ... do stuff here ...
 pass

Custom container name
@is_container("my_container")
class MyDataContainer(BaseDataContainer):
 # ... do stuff here ...
 pass

Overwriting a registered container of the same name
@is_container("my_container", overwrite_existing=True)
class MyDataContainer(BaseDataContainer):
 # ... do stuff here ...
 pass

dantro.containers.general module

This module implements general specialisations of the
BaseDataContainer

	
class ObjectContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.ItemAccessMixin, dantro.base.BaseDataContainer

Generically stores any Python object

This allows item access, but not more.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the stored data

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key)

	Returns an item.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
class PassthroughContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.general.ForwardAttrsToDataMixin, dantro.containers.general.ObjectContainer

An object container that forwards all attribute calls to .data

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getitem__(key)

	Returns an item.

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the stored data

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
class MutableSequenceContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.CheckDataMixin, dantro.mixins.base.ItemAccessMixin, dantro.mixins.base.CollectionMixin, dantro.base.BaseDataContainer, collections.abc.MutableSequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableSequence]

The MutableSequenceContainer stores data that is sequence-like

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = (<class 'collections.abc.MutableSequence'>, <class 'list'>)

	Which types to allow. If None, all types are allowed.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'warn'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
insert(idx: int [https://docs.python.org/3/library/functions.html#int], val) → None [https://docs.python.org/3/library/constants.html#None]

	Insert an item at a given position. The first argument is the index
of the element before which to insert, so a.insert(0, x) inserts at
the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

	Parameters

	
	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index before which to insert

	val – The value to insert

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key)

	Returns an item.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
__iter__()

	Iterates over the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the content of this
data container.

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
append(value)

	S.append(value) – append value to the end of the sequence

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear() → None -- remove all items from S

	

	
count(value) → integer -- return number of occurrences of value

	

	
property data: Any

	The stored data.

	
extend(values)

	S.extend(iterable) – extend sequence by appending elements from the iterable

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but
recommended.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop([index]) → item -- remove and return item at index (default last).

	Raise IndexError if list is empty or index is out of range.

	
remove(value)

	S.remove(value) – remove first occurrence of value.
Raise ValueError if the value is not present.

	
reverse()

	S.reverse() – reverse IN PLACE

	
class MutableMappingContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data=None, **dc_kwargs)

	Bases: dantro.mixins.base.CheckDataMixin, dantro.mixins.base.MappingAccessMixin, dantro.base.BaseDataContainer, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

The MutableMappingContainer stores mutable mapping data, e.g. dicts

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = (<class 'collections.abc.MutableMapping'>, <class 'dict'>)

	Which types to allow. If None, all types are allowed.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'warn'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data=None, **dc_kwargs)

	Initialize a MutableMappingContainer, storing mapping data.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data – The mapping-like data to store. If not given, an empty dict
is created

	**dc_kwargs – Additional arguments for container initialization

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key)

	Returns an item.

	
__iter__()

	Iterates over the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the content of this
data container.

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear() → None. Remove all items from D.

	

	
property data: Any

	The stored data.

	
get(key, default=None)

	Return the value at key, or default if key is not
available.

	
items()

	Returns an iterator over data’s (key, value) tuples

	
keys()

	Returns an iterator over the data’s keys.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
setdefault(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

	

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the data’s values.

	
class StringContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.CollectionMixin, dantro.containers.general.PassthroughContainer

A data container to store string-like data.

	
DATA_EXPECTED_TYPES = (<class 'str'>,)

	

	
DATA_ALLOW_PROXY = False

	

	
DATA_UNEXPECTED_ACTION = 'raise'

	

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getitem__(key)

	Returns an item.

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
__iter__()

	Iterates over the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the stored data

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

dantro.containers.link module

Implements the dantro.containers.link.LinkContainer which holds
a Link object and can be used to link to
another position in the data tree.

	
class LinkContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.base.CheckDataMixin, dantro.containers.general.PassthroughContainer

A LinkContainer is a container containing a
Link object.

It forwards all attribute calls to the Link
object, which in turn forwards all attribute calls to the linked object,
thereby emulating the behaviour of the linked object.

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = (<class 'dantro.utils.link.Link'>,)

	Which types to allow. If None, all types are allowed.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the item.

In this case, the anchor and relative path of the associated link is
returned.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'warn'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__delitem__(key)

	Deletes an item

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getitem__(key)

	Returns an item.

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Any [https://docs.python.org/3/library/typing.html#typing.Any], attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataContainer, which can store data and attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	data (Any) – The data to store in this container

	attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any], optional) – A mapping that is stored as
data attributes.

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the container was added to
the parent group using the
add() method. The child
object is not responsible of linking or adding itself to the
group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key, val)

	Sets an item.

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

dantro.containers.numeric module

This module implements specializations of the
BaseDataContainer class that focus on holding
numerical, array-like data.

	
class NumpyDataContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], **dc_kwargs)

	Bases: dantro.mixins.general.ForwardAttrsToDataMixin, dantro.mixins.numeric.NumbersMixin, dantro.mixins.numeric.ComparisonMixin, dantro.mixins.base.CheckDataMixin, dantro.mixins.base.ItemAccessMixin, dantro.base.BaseDataContainer

The NumpyDataContainer stores numerical array-shaped data.

Specifically: it is made for use with the numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] class.

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = (<class 'numpy.ndarray'>,)

	Which types to allow. If None, all types are allowed.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'raise'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], **dc_kwargs)

	Initialize a NumpyDataContainer, storing data that behaves mostly
like a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The numpy data to store

	**dc_kwargs – Additional arguments for container initialization,
passed on to parent method

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the item

In this case, the dtype and shape of the stored data is returned. Note
that this relies on the ForwardAttrsToDataMixin.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	Length of the underlying data, i.e. first entry in shape

	
copy()

	Return a copy of this NumpyDataContainer.

NOTE that this will create copies of the stored data.

	
save(path: str [https://docs.python.org/3/library/stdtypes.html#str], **save_kwargs)

	Saves the NumpyDataContainer to a file by invoking the
numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] function on the underlying data.

The file extension should be .npy, which is compatible with the
numpy-based data loader. If another file extension is given, the numpy
method will _append_ .npy!

Warning

This does NOT store container attributes!

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to save the file at

	**save_kwargs – Passed to the numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] function

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__abs__()

	Absolute value

	Returns

	A new object with the absolute value of the elements

	
__add__(other)

	Add two objects

	Returns

	A new object containing the summed data

	
__bool__()

	Truth value

	
__ceil__()

	Smallest integer

	Returns

	A new object containing the smallest integer

	
__delitem__(key)

	Deletes an item

	
__divmod__(other)

	Calculate the floor division and modulo of two objects

	Returns

	A new object containing the floor divided data and its modulo

	
__eq__(other)

	Equality

	
__floor__()

	Largest integer

	Returns

	A new object containing the largest element

	
__floordiv__(other)

	Floor divide two objects

	Returns

	A new object containing the floor divided data

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__ge__(other)

	Greater than or equal

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getitem__(key)

	Returns an item.

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__gt__(other)

	Greater than

	
__iadd__(other)

	Add two objects

	Returns

	Self with modified data

	
__ifloordiv__(other)

	Floor divide two objects

	Returns

	Self with modified data

	
__imod__(other)

	Calculate the modulo of two objects

	Returns

	Self with modified data

	
__imul__(other)

	Multiply two objects

	Returns

	Self with modified data

	
__invert__()

	Inverse value

	Returns

	A new object with the inverted values of the elements

	
__ipow__(other)

	Calculate the self data to the power of other data

	Returns

	Self with modified data

	
__isub__(other)

	Subtract two objects

	Returns

	Self with modified data

	
__itruediv__(other)

	Divide two objects

	Returns

	Self with modified data

	
__le__(other)

	Less than or equal

	
__lt__(other)

	Less than

	
__mod__(other)

	Calculate the modulo of two objects

	Returns

	A new object containing the summed data

	
__mul__(other)

	Multiply two objects

	Returns

	A object containing the multiplied data

	
__ne__(other)

	Inequality

	
__neg__()

	Make negative

	Returns

	A new object with negative elements

	
__pos__()

	Make positive

	Returns

	A new object with negative elements

	
__pow__(other)

	Calculate the self data to the power of other data

	Returns

	A new object containing the result

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__round__()

	Rounds number to nearest integer

	Returns

	A new object as rounded number to nearest integer

	
__setitem__(key, val)

	Sets an item.

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
__sub__(other)

	Subtract two objects

	Returns

	A new object containing the subtracted data

	
__truediv__(other)

	Divide two objects

	Returns

	A new object containing the divided data

	
__trunc__()

	Truncated to the nearest integer toward 0

	Returns

	A new object containing the truncated element

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

dantro.containers.path module

This module implements a container that holds the path to a file as data

	
class PathContainer(*args, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None, parent: DirectoryGroup = None, **kwargs)

	Bases: dantro.mixins.general.ForwardAttrsToDataMixin, dantro.base.BaseDataContainer

A container that maps to a file system path.

It uses pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] to represent the given path and allow
easy access and manipulation.
To have direct access to the underlying pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] object,
use the fs_path() property.

Note

The paths can also be paths to directories. However, it’s worth
considering using a DirectoryGroup
if it is desired to carry over the directory tree structure into the
data tree.

Unlike in DirectoryGroup, the local
file system path is set via the data argument during initialization
and not via a data attribute.

	
__init__(*args, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None, parent: DirectoryGroup = None, **kwargs)

	Sets up a container that holds a filesystem path as data.

Note

The filesystem path need not necessarily exist and it also need
not be equivalent to the path within the data tree.

	Parameters

	
	*args – Passed to parent class init

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this container

	data (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]], optional) – The filesystem path
this object is meant to represent. Can be empty if this
container is initialized from a parent directory group, in
which case the information stored therein and the name of
this container will be used to generate the path.

	parent (DirectoryGroup, optional) – If data was not given, the
path of this parent group and the name of this container
will be used to generate a path.

	**kwargs – Passed to parent class init

	
property fs_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the filesystem path associated with this container.
This property is identical to the data property.

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the content of this
data container.

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

dantro.containers.xr module

This module implements specializations of the
BaseDataContainer class that make use of the xarray
package to represent the underlying data.

	
class XrDataContainer(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Union [https://docs.python.org/3/library/typing.html#typing.Union][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]], dims: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, coords: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, extract_metadata: bool [https://docs.python.org/3/library/functions.html#bool] = True, apply_metadata: bool [https://docs.python.org/3/library/functions.html#bool] = True, **dc_kwargs)

	Bases: dantro.mixins.general.ForwardAttrsToDataMixin, dantro.mixins.numeric.NumbersMixin, dantro.mixins.numeric.ComparisonMixin, dantro.mixins.base.CheckDataMixin, dantro.mixins.base.ItemAccessMixin, dantro.base.BaseDataContainer

The XrDataContainer stores numerical xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] data
associated with dimensions, coordinates, and attributes.

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = ('xarray.DataArray', <class 'numpy.ndarray'>)

	Which types to allow. If None, all types are allowed.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'raise'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
_XRC_DIMS_ATTR = 'dims'

	Define as class variable the name of the attribute that determines the
dimensions of the xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
_XRC_DIM_NAME_PREFIX = 'dim_name__'

	Attributes prefixed with this string can be used to set names for
specific dimensions. The prefix should be followed by an integer-parsable
string, e.g. dim_name__0 would be the dimension name for the 0th dim.

	
_XRC_COORDS_ATTR_PREFIX = 'coords__'

	Attributes prefixed with this string determine the coordinate values for
a specific dimension. The prefix should be followed by the name of the
dimension, e.g. coord__time. The values are interpreted according to
the default coordinate mode or, if given, the coord_mode__* attribute.

	
_XRC_COORDS_MODE_DEFAULT = 'values'

	The default mode by which coordinates are interpreted

	
_XRC_COORDS_MODE_ATTR_PREFIX = 'coords_mode__'

	Prefix for the coordinate mode if a custom mode is to be used

	
_XRC_INHERIT_CONTAINER_ATTRIBUTES = True

	Whether to inherit the other container attributes

	
_XRC_STRICT_ATTR_CHECKING = True

	Whether to use strict attribute checking; throws errors if there are
container attributes available that match the prefix but don’t match a
valid dimension name. Can be disabled for speed improvements.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], data: Union [https://docs.python.org/3/library/typing.html#typing.Union][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]], dims: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, coords: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, extract_metadata: bool [https://docs.python.org/3/library/functions.html#bool] = True, apply_metadata: bool [https://docs.python.org/3/library/functions.html#bool] = True, **dc_kwargs)

	Initialize a XrDataContainer and extract dimension and coordinate
labels.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – which name to give to the XrDataContainer

	data (Union[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]]) – The data to store;
anything that an xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] can take.

	dims (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The dimension names.

	coords (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The coordinates. The keys of this dict
have to correspond to the dimension names.

	extract_metadata (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, missing dims or
coords arguments are tried to be populated from the
container attributes.

	apply_metadata (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to apply the extracted
or passed dims and coords to the underlying data.
This might not be desired in cases where the given data
already is a labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] or where
the data is a proxy and the labelling should be postponed.

	**dc_kwargs – passed to parent

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns info about the item.

In this case, the dtype and sizes of the stored data is returned.
Depending on whether metadata is available, the shape information is
shown or the dimension names and the length of the dimensions are used.

	
_format_shape() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper for parsing shape information

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	Length of the underlying data, i.e. first entry in shape

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
__abs__()

	Absolute value

	Returns

	A new object with the absolute value of the elements

	
__add__(other)

	Add two objects

	Returns

	A new object containing the summed data

	
__bool__()

	Truth value

	
__ceil__()

	Smallest integer

	Returns

	A new object containing the smallest integer

	
__delitem__(key)

	Deletes an item

	
__divmod__(other)

	Calculate the floor division and modulo of two objects

	Returns

	A new object containing the floor divided data and its modulo

	
__eq__(other)

	Equality

	
__floor__()

	Largest integer

	Returns

	A new object containing the largest element

	
__floordiv__(other)

	Floor divide two objects

	Returns

	A new object containing the floor divided data

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__ge__(other)

	Greater than or equal

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getitem__(key)

	Returns an item.

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__gt__(other)

	Greater than

	
__iadd__(other)

	Add two objects

	Returns

	Self with modified data

	
__ifloordiv__(other)

	Floor divide two objects

	Returns

	Self with modified data

	
__imod__(other)

	Calculate the modulo of two objects

	Returns

	Self with modified data

	
__imul__(other)

	Multiply two objects

	Returns

	Self with modified data

	
__invert__()

	Inverse value

	Returns

	A new object with the inverted values of the elements

	
__ipow__(other)

	Calculate the self data to the power of other data

	Returns

	Self with modified data

	
__isub__(other)

	Subtract two objects

	Returns

	Self with modified data

	
__itruediv__(other)

	Divide two objects

	Returns

	Self with modified data

	
__le__(other)

	Less than or equal

	
__lt__(other)

	Less than

	
__mod__(other)

	Calculate the modulo of two objects

	Returns

	A new object containing the summed data

	
__mul__(other)

	Multiply two objects

	Returns

	A object containing the multiplied data

	
__ne__(other)

	Inequality

	
__neg__()

	Make negative

	Returns

	A new object with negative elements

	
__pos__()

	Make positive

	Returns

	A new object with negative elements

	
__pow__(other)

	Calculate the self data to the power of other data

	Returns

	A new object containing the result

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__round__()

	Rounds number to nearest integer

	Returns

	A new object as rounded number to nearest integer

	
__setitem__(key, val)

	Sets an item.

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
__sub__(other)

	Subtract two objects

	Returns

	A new object containing the subtracted data

	
__truediv__(other)

	Divide two objects

	Returns

	A new object containing the divided data

	
__trunc__()

	Truncated to the nearest integer toward 0

	Returns

	A new object containing the truncated element

	
_abc_impl = <_abc._abc_data object>

	

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
copy(*, deep: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Return a new object with a copy of the data. The copy is deep if not
specified otherwise.

	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the copy is deep

	Returns

	A (deep) copy of this object.

	Return type

	XrDataContainer

	
property data: Any

	The stored data.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
save(path: str [https://docs.python.org/3/library/stdtypes.html#str], **save_kwargs)

	Saves the XrDataContainer to a file by invoking the .to_netcdf
method of the underlying data.

The recommended file extension is .xrdc or .nc_da, which are
compatible with the xarray-based data loader.

Warning

This does NOT store container attributes!

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to save the file at

	**save_kwargs – Passed to .no_netcdf method call

	
_extract_metadata()

	Extracts metadata from the container attributes and stores them
in the _dim_names and _dim_to_coords_map cache attributes.

	
_inherit_attrs()

	Carry over container attributes to the data array attributes.

This does not include container attributes that are used for extracting
metadata; it makes no sense to have them in the attributes of the
already labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray].

	
_apply_metadata()

	Applies the cached metadata to the underlying
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
_postprocess_proxy_resolution()

	Only invoked from
ProxySupportMixin, which have
to be added to the class specifically. This function takes care to
apply the potentially existing metadata after the proxy was resolved.

	
_parse_sizes_from_metadata() → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]

	Invoked from _format_shape when no metadata was applied but the
dimension names are available. Should return data in the same form as
xr.DataArray.sizes.items() does.

dantro.data_loaders package

This module implements loaders mixin classes for use with the
DataManager.

All these mixin classes should follow the following signature:

from dantro.data_loaders import add_loader
from dantro.base import BaseDataContainer

class TheTargetContainerClass(BaseDataContainer):
 pass

class LoadernameLoaderMixin:

 @add_loader(TargetCls=TheTargetContainerClass)
 def _load_loadername(filepath: str, *, TargetCls: type):
 # ...
 return TargetCls(...)

As ensured by the add_loader()
decorator, each _load_loadername method gets supplied with the path to a
file and the TargetCls argument, which can be called to create an object
of the correct type and name.
In addition, the decorator registers the load function with the dantro
DATA_LOADERS registry, making it
available to DataManager instances that do not
have the mixin added.

By default, and to decouple the loader from the container, it should be
considered to be a static method; in other words: the first positional argument
should ideally not be self!
If self is required for some reason, set the omit_self option of the
decorator to False, making it a regular (instead of a static) method.

	
class AllAvailableLoadersMixin

	Bases: dantro.data_loaders.text.TextLoaderMixin, dantro.data_loaders.fspath.FSPathLoaderMixin, dantro.data_loaders.yaml.YamlLoaderMixin, dantro.data_loaders.pickle.PickleLoaderMixin, dantro.data_loaders.hdf5.Hdf5LoaderMixin, dantro.data_loaders.xarray.XarrayLoaderMixin, dantro.data_loaders.pandas.PandasLoaderMixin, dantro.data_loaders.numpy.NumpyLoaderMixin

A mixin bundling all data loaders that are available in dantro.
See the individual mixins for a more detailed documentation.

If you want all these loaders available in your data manager, inherit from
this mixin class and DataManager:

import dantro

class MyDataManager(
 dantro.data_loaders.AllAvailableLoadersMixin,
 dantro.DataManager,
):
 pass

	
_HDF5_DECODE_ATTR_BYTESTRINGS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	If true (default), will attempt to decode HDF5 attributes that are
stored as byte arrays into regular Python strings; this can make attribute
handling much easier.

	
_HDF5_DSET_DEFAULT_CLS

	alias of dantro.containers.numeric.NumpyDataContainer

	
_HDF5_DSET_MAP: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	If mapping is enabled, the equivalent dantro types for HDF5 datasets
are determined from this mapping.

	
_HDF5_GROUP_MAP: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	If mapping is enabled, the equivalent dantro types for HDF5 groups are
determined from this mapping.

	
_HDF5_MAP_FROM_ATTR: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	The name of the HDF5 dataset or group attribute to read in order to
determine the type mapping. For example, this could be "content".
This is the fallback value if no map_from_attr argument is given to
dantro.data_loaders.hdf5.Hdf5LoaderMixin._load_hdf5()

	
_container_from_h5dataset(h5dset: Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset], target: BaseDataGroup, *, name: str [https://docs.python.org/3/library/stdtypes.html#str], load_as_proxy: bool [https://docs.python.org/3/library/functions.html#bool], proxy_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], DsetCls: type [https://docs.python.org/3/library/functions.html#type], map_attr: str [https://docs.python.org/3/library/stdtypes.html#str], DsetMap: dict [https://docs.python.org/3/library/stdtypes.html#dict], plvl: int [https://docs.python.org/3/library/functions.html#int], pfstr: str [https://docs.python.org/3/library/stdtypes.html#str], **_) → BaseDataContainer

	Adds a new data container from a h5.Dataset

The group types may be mapped to different dantro types; this is
controlled by the extracted HDF5 attribute with the name specified in
the _HDF5_MAP_FROM_ATTR class attribute.

	Parameters

	
	h5dset (Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset]) – The source dataset to load into target
as a dantro data container.

	target (BaseDataGroup) – The target group where the h5dset will
be represented in as a new dantro data container.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the new container

	load_as_proxy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to load as
Hdf5DataProxy

	proxy_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Upon proxy initialization, unpacked into
dantro.proxy.hdf5.Hdf5DataProxy.__init__()

	DsetCls (BaseDataContainer) – The type that is used to create
the dataset-equivalents in target. If mapping is enabled,
this serves as the fallback type.

	map_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 attribute to inspect in order to determine
the name of the mapping

	DsetMap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map of names to BaseDataContainer-derived types;
always needed, but may be empty

	plvl (int [https://docs.python.org/3/library/functions.html#int]) – the verbosity of the progress indicator

	pfstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – a format string for the progress indicator

	
_decode_attr_val(attr_val) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Wrapper around decode_bytestrings

	
_evaluate_type_mapping(key: str [https://docs.python.org/3/library/stdtypes.html#str], *, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict], tmap: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]], fallback: type [https://docs.python.org/3/library/functions.html#type]) → type [https://docs.python.org/3/library/functions.html#type]

	Given an attributes dict or group attributes, evaluates which type
a target container should use.

	
_group_from_h5group(h5grp: Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], target: BaseDataGroup, *, name: str [https://docs.python.org/3/library/stdtypes.html#str], map_attr: str [https://docs.python.org/3/library/stdtypes.html#str], GroupMap: dict [https://docs.python.org/3/library/stdtypes.html#dict], **_) → BaseDataGroup

	Adds a new group from a h5.Group

The group types may be mapped to different dantro types; this is
controlled by the extracted HDF5 attribute with the name specified in
the _HDF5_MAP_FROM_ATTR class attribute.

	Parameters

	
	h5grp (Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group]) – The HDF5 group to create a dantro group for in
the target group.

	target (BaseDataGroup) – The group in which to create a new group
that represents h5grp

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the new group

	GroupMap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map of names to BaseDataGroup-derived types;
always needed, but may be empty

	map_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 attribute to inspect in order to determine
the name of the mapping

	**_ – ignored

	
_load_fspath(*args, **kwargs)

	Creates a representation of a filesystem path using the
PathContainer.

	Parameters

	
	fspath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filesystem path to a file or directory

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	Returns

	The container representing the file or directory path

	Return type

	PathContainer

	
_load_fstree(*args, **kwargs)

	Loads a directory tree into the data tree using
DirectoryGroup to represent
directories and PathContainer to
represent files.

	Parameters

	
	dirpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base directory path to start the search from.

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	tree_glob (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The globbing parameters,
passed to glob_paths(). By default,
all paths of files and directories are matched.

	directories_first (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will first add the
directories to the data tree, such that they appear on top.

	Returns

	
	The group representing the root of the data tree
	that was to be loaded, i.e. anchored at dirpath.

	Return type

	DirectoryGroup

	
_load_hdf5(*args, **kwargs)

	Loads the specified hdf5 file into DataGroup- and DataContainer-like
objects; this completely recreates the hierarchic structure of the hdf5
file. The data can be loaded into memory completely, or be loaded as
a proxy object.

The h5py.File [https://docs.h5py.org/en/latest/high/file.html#h5py.File] and h5py.Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group] objects will be
converted to the specified
BaseDataGroup-derived objects and the
h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset] objects to the specified
BaseDataContainer-derived object.

All HDF5 group or dataset attributes are carried over and are
accessible under the attrs attribute of the respective dantro
objects in the tree.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the HDF5 file that is to be loaded

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The group type this is loaded into

	load_as_proxy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the leaf datasets are
loaded as dantro.proxy.hdf5.Hdf5DataProxy
objects. That way, the data is only loaded into memory when
their .data property is accessed the first time, either
directly or indirectly.

	proxy_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – When loading as proxy, these
parameters are unpacked in the __init__ call. For available
argument see Hdf5DataProxy.

	lower_case_keys (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to use only lower-case
versions of the paths encountered in the HDF5 file.

	enable_mapping (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will use the class
variables _HDF5_GROUP_MAP and _HDF5_DSET_MAP to map
groups or datasets to a custom container class during loading.
Which attribute to read is determined by the map_from_attr
argument (see there).

	map_from_attr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – From which attribute to read the
key that is used in the mapping. If nothing is given, the
class variable _HDF5_MAP_FROM_ATTR is used.

	direct_insertion (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, some non-crucial checks
are skipped during insertion and elements are inserted (more
or less) directly into the data tree, thus speeding up the data
loading process.
This option should only be enabled if data is loaded into a yet
unpopulated part of the data tree, otherwise existing elements
might be overwritten silently.
This option only applies to data groups, not to containers.

	progress_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – parameters for the progress
indicator. Possible keys:

	level (int):
	how verbose to print progress info; possible values are:
0: None, 1: on file level, 2: on dataset level.
Note that this option and the progress_indicator of
the DataManager are independent from each other.

	fstr:
	format string for progress report, receives the following
keys:

	progress_info (total progress indicator),

	fname (basename of current hdf5 file),

	fpath (full path of current hdf5 file),

	name (current dataset name),

	path (current path within the hdf5 file)

	Returns

	
	The populated root-level group, corresponding to
	the base group of the file

	Return type

	OrderedDataGroup

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If enable_mapping, but no map attribute can be
 determined from the given argument or the class variable
 _HDF5_MAP_FROM_ATTR

	
_load_hdf5_as_dask(*args, **kwargs)

	This is a shorthand for
_load_hdf5()
with the load_as_proxy flag set and resolve_as_dask passed as
additional arguments to the proxy via proxy_kwargs.

	
_load_hdf5_proxy(*args, **kwargs)

	This is a shorthand for
_load_hdf5()
with the load_as_proxy flag set.

	
_load_numpy(*args, **kwargs)

	Loads the output of numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] back into a
NumpyDataContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the *.npy file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load], see there for
supported keyword arguments.

	Returns

	The reconstructed NumpyDataContainer

	Return type

	NumpyDataContainer

	
_load_numpy_binary(*args, **kwargs)

	Loads the output of numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] back into a
NumpyDataContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the *.npy file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load], see there for
supported keyword arguments.

	Returns

	The reconstructed NumpyDataContainer

	Return type

	NumpyDataContainer

	
_load_numpy_txt(*args, **kwargs)

	Loads data from a text file using numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the text file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt], see there for
supported keyword arguments.

	Returns

	The container with the loaded data as payload

	Return type

	NumpyDataContainer

	
_load_pandas_csv(*args, **kwargs)

	Loads CSV data using pandas.read_csv() [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv], returning a
PassthroughContainer
that contains a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

Note

As there is no proper equivalent of a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]
in dantro (yet), and unpacking the dataframe into a dantro group
would reduce functionality, a passthrough-container is used here.
It behaves mostly like the object it wraps.

However, in some cases, you may have to retrieve the underlying
data using the .data property.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the CSV data file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to pandas.read_csv() [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv]

	Returns

	
	Payload being the loaded CSV data in form of
	a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Return type

	PassthroughContainer

	
_load_pandas_generic(*args, **kwargs)

	Loads data from a file using one of pandas [https://pandas.pydata.org/docs/index.html#module-pandas] read_*
functions, returning a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] wrapped into a
PassthroughContainer.

The reader argument needs to match a reader function from
pandas IO [https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html].

Note

As there is no proper equivalent of a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]
in dantro (yet), and unpacking the dataframe into a dantro group
would reduce functionality, a passthrough-container is used here.
It behaves mostly like the object it wraps.

However, in some cases, you may have to retrieve the underlying
data using the .data property.

Note

Some of pandas’ reader functions require additional packages to
have been installed.

Warning

While this in principle allows access to reader functions that are
not file-based, calling those will most probably fail because the
functions do not expect a file path as their first argument.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the data file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	reader (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the reader function from pandas IO to use

	**load_kwargs – Passed on to the reader function

	Returns

	
	Payload being the loaded data in form of
	a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Return type

	PassthroughContainer

	
_load_pickle(*args, **kwargs)

	Load a pickled object using dill._dill.load().

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the pickle-dumped file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**pkl_kwargs – Passed on to dill._dill.load()

	Returns

	The unpickled object, stored in a dantro container

	Return type

	ObjectContainer

	
_load_plain_text(*args, **kwargs)

	Loads the content of a plain text file into a
StringContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the plain text file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to open() [https://docs.python.org/3/library/functions.html#open]

	Returns

	The reconstructed StringContainer

	Return type

	StringContainer

	
_load_xr_dataarray(*args, **kwargs)

	Loads an xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] from a netcdf file into an
XrDataContainer.
Uses xarray.open_dataarray() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataarray.html#xarray.open_dataarray].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the xarray-dumped netcdf file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	load_completely (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will call .load()
on the loaded DataArray to load it completely into memory.
Also see: xarray.DataArray.load() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.load.html#xarray.DataArray.load].

	engine (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which engine to use for loading. Refer to
the xarray documentation for available engines.

	**load_kwargs – Passed on to xarray.open_dataarray() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataarray.html#xarray.open_dataarray]

	Returns

	The reconstructed XrDataContainer

	Return type

	XrDataContainer

	
_load_xr_dataset(*args, **kwargs)

	Loads an xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] from a netcdf file into a
PassthroughContainer.
Uses xarray.open_dataset() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset].

Note

As there is no proper equivalent of a dataset in dantro (yet), and
unpacking the dataset into a dantro group would reduce
functionality, the PassthroughContainer is used here. It should
behave almost the same as an xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the xarray-dumped netcdf file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	load_completely (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will call .load()
on the loaded xr.Dataset to load it completely into memory.
Also see: xarray.Dataset.load() [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.load.html#xarray.Dataset.load].

	engine (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which engine to use for loading. Refer to
the xarray documentation for available engines.

	**load_kwargs – Passed on to xarray.open_dataset() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset]

	Returns

	
	The reconstructed xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset],
	stored in a passthrough container.

	Return type

	PassthroughContainer

	
_load_yaml(*args, **kwargs)

	Load a YAML file from the given path and create a container to
store that data in.
Uses the yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function for loading.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to load the YAML file from

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml]

	Returns
	MutableMappingContainer: The loaded YAML content as a container

	
_load_yaml_to_object(*args, **kwargs)

	Load a YAML file from the given path and create a container to
store that data in.

Uses the yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function for loading.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to load the YAML file from

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml]

	Returns

	The loaded YAML content as an ObjectContainer

	Return type

	ObjectContainer

	
_recursively_load_hdf5(src: Union [https://docs.python.org/3/library/typing.html#typing.Union][Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]], *, target: BaseDataGroup, lower_case_keys: bool [https://docs.python.org/3/library/functions.html#bool], direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool], **kwargs)

	Recursively loads the data from a source object (an h5py.File or a
h5py.Group) into the target dantro group.

	Parameters

	
	src (Union[Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]]) – The HDF5 source object from
which to load the data. This object it iterated over.

	target (BaseDataGroup) – The target group to populate with the data
from src.

	lower_case_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to make keys lower-case

	direct_insertion (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use direct insertion mode on
the target group (and all groups below)

	**kwargs – Passed on to the group and container loader methods,
_container_from_h5dataset()
and
_group_from_h5group().

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – When encountering objects other than groups
 or datasets in the HDF5 file

	
LOADER_BY_FILE_EXT = {'csv': 'pandas_csv', 'h5': 'hdf5', 'hdf5': 'hdf5', 'log': 'text', 'nc': 'xr_dataarray', 'nc_da': 'xr_dataarray', 'nc_ds': 'xr_dataset', 'netcdf': 'xr_dataarray', 'np_txt': 'numpy_txt', 'npy': 'numpy_binary', 'pickle': 'pickle', 'pkl': 'pkl', 'txt': 'text', 'xrdc': 'xr_dataarray', 'yaml': 'yaml', 'yml': 'yml'}

	A map of file extensions to preferred loader names

Submodules

dantro.data_loaders._registry module

Implements registration of data loaders, including a decorator to ensure
correct loader function signature (which also automatically keeps track of the
data loader function).

	
LOAD_FUNC_PREFIX: str [https://docs.python.org/3/library/stdtypes.html#str] = '_load_'

	The prefix that all load functions need to start with

	
class DataLoaderRegistry

	Bases: dantro._registry.ObjectRegistry

Specialization of ObjectRegistry for the
purpose of keeping track of data loaders.

	
_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data loader'

	A description string for the entries of this registry

	
_SKIP: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for skip_existing argument

	
_OVERWRITE: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for overwrite_existing argument

	
_EXPECTED_TYPE: Optional[Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], type [https://docs.python.org/3/library/functions.html#type]]] = None

	If set, will check for expected types

	
__contains__(obj_or_key: Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given argument is part of the keys or values of this
registry.

	
_check_object(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Checks whether the object is valid.
If not, raises InvalidRegistryEntry.

	
_decorator(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Method that can be used as a decorator for registering objects
with this registry.

	Parameters

	
	arg (Union[Any, str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name that should be used or
the object that is to be added. If not a string, this refers
to the @is_container call syntax

	**kws – Passed to register()

	
_determine_name(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Determines the object name, using a potentially given name

	
_register_via_decorator(obj, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kws)

	Performs the registration operations when the decorator is used to
register an object.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property desc: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
items()

	

	
keys()

	

	
register(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, skip_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, overwrite_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an entry to the registry.

	Parameters

	
	obj (Any) – The object to add to the registry.

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name to use. If not given, will
deduce a name from the given object.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if an
object of that name already exists. If None, the classes
default behavior (see _SKIP) is used.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite an
entry if an object with that name already exists. If None, the
classes default behavior (see _OVERWRITE)
is used.

	
values()

	

	
DATA_LOADERS = <dantro.data_loaders._registry.DataLoaderRegistry object>

	The dantro data loaders registry.

The DataManager and derived classes have access
to all data loaders via this registry (in addition to method-based access
they have via potentially used mixins).

To register a new loader, use the add_loader() decorator:

	
_register_loader(wrapped_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], name: str [https://docs.python.org/3/library/stdtypes.html#str], *, skip_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Internally used method to add an entry to the shared loader registry.

	Parameters

	
	wrapped_func (Callable) – The wrapped callable that is to be registered
as a loader. This is what the add_loader() decorator
generates.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name to use for registration.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if the
loader name is already registered. This suppresses the
ValueError raised on existing loader name.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite a potentially
already existing loader of the same name. If set, this takes
precedence over skip_existing.

	
add_loader(*, TargetCls: type [https://docs.python.org/3/library/functions.html#type], omit_self: bool [https://docs.python.org/3/library/functions.html#bool] = True, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = True, register_aliases: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	This decorator should be used to specify loader methods in mixin classes
to the DataManager.

All decorated methods where omit_self is True will additinoally be
registered in the DATA_LOADERS registry.

Example:

from dantro.containers import ObjectContainer
from dantro.data_loaders import add_loader

class MyDataLoaderMixin:

 @add_loader(TargetCls=ObjectContainer)
 def _load_foobar(path: str, *, TargetCls: type, **kws):
 # load something from the given file path
 with open(path, **kws) as f:
 data = f.read()

 return TargetCls(data=data)

Define a DataManager that has the custom loader mixed-in

from dantro import DataManager

class MyDataManager(MyDataLoaderMixin, DataManager):
 pass

Note

Loader methods need to be named _load_<name> and are then
accessible via <name>.

Important: Loader methods may not be named _load_file!

Hint

This decorator can also be used on standalone functions, without
the need to define a mixin class.
In such a case, omit_self can still be set to False, leading to the
first positional argument that the decorated function needs to accept
to be the DataManager instance that the
loader is used in.

Note that these standalone function should still begin with _load_.

	Parameters

	
	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The return type of the load function. This is stored
as an attribute of the decorated function.

	omit_self (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True (default), the decorated method
will not be supplied with the self object instance, thus being
equivalent to a class method.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, will not overwrite the
existing registry entry in DATA_LOADERS but raise an
error instead.

	register_aliases (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, will additionally
register this method under the given name

dantro.data_loaders.fspath module

A data loader that loads a directory tree into the data tree

	
class FSPathLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mixin for DataManager that can load a
file system directory tree into the data tree.

The mixin supplies two load functions:

	The fspath loader (_load_fspath()) loads individual file
paths into the data tree, representing them as
PathContainer.
This is useful to generate a flat structure from a potentially nested
filesystem structure, i.e. all paths will (by default) be in one group.

	The fstree loader (_load_fstree()) will load a file system
tree into the data tree, retaining the tree structure.
This is useful if a representation of some file system structure in the
data tree is desired.

	
_load_fspath(*args, **kwargs)

	Creates a representation of a filesystem path using the
PathContainer.

	Parameters

	
	fspath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filesystem path to a file or directory

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	Returns

	The container representing the file or directory path

	Return type

	PathContainer

	
_load_fstree(*args, **kwargs)

	Loads a directory tree into the data tree using
DirectoryGroup to represent
directories and PathContainer to
represent files.

	Parameters

	
	dirpath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The base directory path to start the search from.

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	tree_glob (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The globbing parameters,
passed to glob_paths(). By default,
all paths of files and directories are matched.

	directories_first (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will first add the
directories to the data tree, such that they appear on top.

	Returns

	
	The group representing the root of the data tree
	that was to be loaded, i.e. anchored at dirpath.

	Return type

	DirectoryGroup

dantro.data_loaders.hdf5 module

Implements loading of Hdf5 files into the dantro data tree

	
class Hdf5LoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies functionality to load HDF5 files into the
DataManager.

It resolves the HDF5 groups into corresponding data groups and the datasets
(by default) into
NumpyDataContainer s.

If enable_mapping is set, the class variables _HDF5_DSET_MAP and
_HDF5_GROUP_MAP are used to map from a string to a container type. The
class variable _HDF5_MAP_FROM_ATTR determines the default value of the
attribute to read and use as input string for the mapping.

	
_HDF5_DSET_DEFAULT_CLS

	the default class to use for datasets. This should be a dantro
BaseDataContainer-derived class.
Note that certain data groups can overwrite the default class for
underlying members.

alias of dantro.containers.numeric.NumpyDataContainer

	
_HDF5_GROUP_MAP: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	If mapping is enabled, the equivalent dantro types for HDF5 groups are
determined from this mapping.

	
_HDF5_DSET_MAP: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	If mapping is enabled, the equivalent dantro types for HDF5 datasets
are determined from this mapping.

	
_HDF5_MAP_FROM_ATTR: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	The name of the HDF5 dataset or group attribute to read in order to
determine the type mapping. For example, this could be "content".
This is the fallback value if no map_from_attr argument is given to
dantro.data_loaders.hdf5.Hdf5LoaderMixin._load_hdf5()

	
_HDF5_DECODE_ATTR_BYTESTRINGS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	If true (default), will attempt to decode HDF5 attributes that are
stored as byte arrays into regular Python strings; this can make attribute
handling much easier.

	
_load_hdf5(*args, **kwargs)

	Loads the specified hdf5 file into DataGroup- and DataContainer-like
objects; this completely recreates the hierarchic structure of the hdf5
file. The data can be loaded into memory completely, or be loaded as
a proxy object.

The h5py.File [https://docs.h5py.org/en/latest/high/file.html#h5py.File] and h5py.Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group] objects will be
converted to the specified
BaseDataGroup-derived objects and the
h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset] objects to the specified
BaseDataContainer-derived object.

All HDF5 group or dataset attributes are carried over and are
accessible under the attrs attribute of the respective dantro
objects in the tree.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the HDF5 file that is to be loaded

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The group type this is loaded into

	load_as_proxy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the leaf datasets are
loaded as dantro.proxy.hdf5.Hdf5DataProxy
objects. That way, the data is only loaded into memory when
their .data property is accessed the first time, either
directly or indirectly.

	proxy_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – When loading as proxy, these
parameters are unpacked in the __init__ call. For available
argument see Hdf5DataProxy.

	lower_case_keys (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to use only lower-case
versions of the paths encountered in the HDF5 file.

	enable_mapping (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will use the class
variables _HDF5_GROUP_MAP and _HDF5_DSET_MAP to map
groups or datasets to a custom container class during loading.
Which attribute to read is determined by the map_from_attr
argument (see there).

	map_from_attr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – From which attribute to read the
key that is used in the mapping. If nothing is given, the
class variable _HDF5_MAP_FROM_ATTR is used.

	direct_insertion (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, some non-crucial checks
are skipped during insertion and elements are inserted (more
or less) directly into the data tree, thus speeding up the data
loading process.
This option should only be enabled if data is loaded into a yet
unpopulated part of the data tree, otherwise existing elements
might be overwritten silently.
This option only applies to data groups, not to containers.

	progress_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – parameters for the progress
indicator. Possible keys:

	level (int):
	how verbose to print progress info; possible values are:
0: None, 1: on file level, 2: on dataset level.
Note that this option and the progress_indicator of
the DataManager are independent from each other.

	fstr:
	format string for progress report, receives the following
keys:

	progress_info (total progress indicator),

	fname (basename of current hdf5 file),

	fpath (full path of current hdf5 file),

	name (current dataset name),

	path (current path within the hdf5 file)

	Returns

	
	The populated root-level group, corresponding to
	the base group of the file

	Return type

	OrderedDataGroup

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If enable_mapping, but no map attribute can be
 determined from the given argument or the class variable
 _HDF5_MAP_FROM_ATTR

	
_load_hdf5_proxy(*args, **kwargs)

	This is a shorthand for
_load_hdf5()
with the load_as_proxy flag set.

	
_load_hdf5_as_dask(*args, **kwargs)

	This is a shorthand for
_load_hdf5()
with the load_as_proxy flag set and resolve_as_dask passed as
additional arguments to the proxy via proxy_kwargs.

	
_recursively_load_hdf5(src: Union [https://docs.python.org/3/library/typing.html#typing.Union][Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]], *, target: BaseDataGroup, lower_case_keys: bool [https://docs.python.org/3/library/functions.html#bool], direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool], **kwargs)

	Recursively loads the data from a source object (an h5py.File or a
h5py.Group) into the target dantro group.

	Parameters

	
	src (Union[Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]]) – The HDF5 source object from
which to load the data. This object it iterated over.

	target (BaseDataGroup) – The target group to populate with the data
from src.

	lower_case_keys (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to make keys lower-case

	direct_insertion (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use direct insertion mode on
the target group (and all groups below)

	**kwargs – Passed on to the group and container loader methods,
_container_from_h5dataset()
and
_group_from_h5group().

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – When encountering objects other than groups
 or datasets in the HDF5 file

	
_group_from_h5group(h5grp: Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group], target: BaseDataGroup, *, name: str [https://docs.python.org/3/library/stdtypes.html#str], map_attr: str [https://docs.python.org/3/library/stdtypes.html#str], GroupMap: dict [https://docs.python.org/3/library/stdtypes.html#dict], **_) → BaseDataGroup

	Adds a new group from a h5.Group

The group types may be mapped to different dantro types; this is
controlled by the extracted HDF5 attribute with the name specified in
the _HDF5_MAP_FROM_ATTR class attribute.

	Parameters

	
	h5grp (Group [https://docs.h5py.org/en/latest/high/group.html#h5py.Group]) – The HDF5 group to create a dantro group for in
the target group.

	target (BaseDataGroup) – The group in which to create a new group
that represents h5grp

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the new group

	GroupMap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map of names to BaseDataGroup-derived types;
always needed, but may be empty

	map_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 attribute to inspect in order to determine
the name of the mapping

	**_ – ignored

	
_container_from_h5dataset(h5dset: Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset], target: BaseDataGroup, *, name: str [https://docs.python.org/3/library/stdtypes.html#str], load_as_proxy: bool [https://docs.python.org/3/library/functions.html#bool], proxy_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], DsetCls: type [https://docs.python.org/3/library/functions.html#type], map_attr: str [https://docs.python.org/3/library/stdtypes.html#str], DsetMap: dict [https://docs.python.org/3/library/stdtypes.html#dict], plvl: int [https://docs.python.org/3/library/functions.html#int], pfstr: str [https://docs.python.org/3/library/stdtypes.html#str], **_) → BaseDataContainer

	Adds a new data container from a h5.Dataset

The group types may be mapped to different dantro types; this is
controlled by the extracted HDF5 attribute with the name specified in
the _HDF5_MAP_FROM_ATTR class attribute.

	Parameters

	
	h5dset (Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset]) – The source dataset to load into target
as a dantro data container.

	target (BaseDataGroup) – The target group where the h5dset will
be represented in as a new dantro data container.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the new container

	load_as_proxy (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to load as
Hdf5DataProxy

	proxy_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Upon proxy initialization, unpacked into
dantro.proxy.hdf5.Hdf5DataProxy.__init__()

	DsetCls (BaseDataContainer) – The type that is used to create
the dataset-equivalents in target. If mapping is enabled,
this serves as the fallback type.

	map_attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 attribute to inspect in order to determine
the name of the mapping

	DsetMap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Map of names to BaseDataContainer-derived types;
always needed, but may be empty

	plvl (int [https://docs.python.org/3/library/functions.html#int]) – the verbosity of the progress indicator

	pfstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – a format string for the progress indicator

	
_decode_attr_val(attr_val) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Wrapper around decode_bytestrings

	
_evaluate_type_mapping(key: str [https://docs.python.org/3/library/stdtypes.html#str], *, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict], tmap: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]], fallback: type [https://docs.python.org/3/library/functions.html#type]) → type [https://docs.python.org/3/library/functions.html#type]

	Given an attributes dict or group attributes, evaluates which type
a target container should use.

dantro.data_loaders.numpy module

Defines a loader mixin to load numpy dumps

	
class NumpyLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies functionality to load numpy binary dumps into numpy objects

	
_load_numpy_binary(*args, **kwargs)

	Loads the output of numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] back into a
NumpyDataContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the *.npy file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load], see there for
supported keyword arguments.

	Returns

	The reconstructed NumpyDataContainer

	Return type

	NumpyDataContainer

	
_load_numpy_txt(*args, **kwargs)

	Loads data from a text file using numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the text file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.loadtxt() [https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html#numpy.loadtxt], see there for
supported keyword arguments.

	Returns

	The container with the loaded data as payload

	Return type

	NumpyDataContainer

	
_load_numpy(*args, **kwargs)

	Loads the output of numpy.save() [https://numpy.org/doc/stable/reference/generated/numpy.save.html#numpy.save] back into a
NumpyDataContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the *.npy file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to numpy.load() [https://numpy.org/doc/stable/reference/generated/numpy.load.html#numpy.load], see there for
supported keyword arguments.

	Returns

	The reconstructed NumpyDataContainer

	Return type

	NumpyDataContainer

dantro.data_loaders.pandas module

Defines a loader mixin to load data via pandas [https://pandas.pydata.org/docs/index.html#module-pandas]

	
class PandasLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies functionality to load data via pandas [https://pandas.pydata.org/docs/index.html#module-pandas].

	
_load_pandas_csv(*args, **kwargs)

	Loads CSV data using pandas.read_csv() [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv], returning a
PassthroughContainer
that contains a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

Note

As there is no proper equivalent of a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]
in dantro (yet), and unpacking the dataframe into a dantro group
would reduce functionality, a passthrough-container is used here.
It behaves mostly like the object it wraps.

However, in some cases, you may have to retrieve the underlying
data using the .data property.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the CSV data file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to pandas.read_csv() [https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html#pandas.read_csv]

	Returns

	
	Payload being the loaded CSV data in form of
	a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Return type

	PassthroughContainer

	
_load_pandas_generic(*args, **kwargs)

	Loads data from a file using one of pandas [https://pandas.pydata.org/docs/index.html#module-pandas] read_*
functions, returning a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame] wrapped into a
PassthroughContainer.

The reader argument needs to match a reader function from
pandas IO [https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html].

Note

As there is no proper equivalent of a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame]
in dantro (yet), and unpacking the dataframe into a dantro group
would reduce functionality, a passthrough-container is used here.
It behaves mostly like the object it wraps.

However, in some cases, you may have to retrieve the underlying
data using the .data property.

Note

Some of pandas’ reader functions require additional packages to
have been installed.

Warning

While this in principle allows access to reader functions that are
not file-based, calling those will most probably fail because the
functions do not expect a file path as their first argument.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the data file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	reader (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the reader function from pandas IO to use

	**load_kwargs – Passed on to the reader function

	Returns

	
	Payload being the loaded data in form of
	a pandas.DataFrame [https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame].

	Return type

	PassthroughContainer

dantro.data_loaders.pickle module

Defines a data loader for Python pickles.

	
class PickleLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies a load function for pickled python objects.

For unpickling, the dill package is used.

	
_load_pickle(*args, **kwargs)

	Load a pickled object using dill._dill.load().

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the pickle-dumped file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**pkl_kwargs – Passed on to dill._dill.load()

	Returns

	The unpickled object, stored in a dantro container

	Return type

	ObjectContainer

dantro.data_loaders.text module

Defines a loader mixin to load plain text files

	
class TextLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mixin for DataManager that supports
loading of plain text files.

	
_load_plain_text(*args, **kwargs)

	Loads the content of a plain text file into a
StringContainer.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the plain text file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to open() [https://docs.python.org/3/library/functions.html#open]

	Returns

	The reconstructed StringContainer

	Return type

	StringContainer

dantro.data_loaders.xarray module

Defines a loader mixin to load xarray objects

	
class XarrayLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies functionality to load xarray objects

	
_load_xr_dataarray(*args, **kwargs)

	Loads an xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] from a netcdf file into an
XrDataContainer.
Uses xarray.open_dataarray() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataarray.html#xarray.open_dataarray].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the xarray-dumped netcdf file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	load_completely (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will call .load()
on the loaded DataArray to load it completely into memory.
Also see: xarray.DataArray.load() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.load.html#xarray.DataArray.load].

	engine (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which engine to use for loading. Refer to
the xarray documentation for available engines.

	**load_kwargs – Passed on to xarray.open_dataarray() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataarray.html#xarray.open_dataarray]

	Returns

	The reconstructed XrDataContainer

	Return type

	XrDataContainer

	
_load_xr_dataset(*args, **kwargs)

	Loads an xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] from a netcdf file into a
PassthroughContainer.
Uses xarray.open_dataset() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset].

Note

As there is no proper equivalent of a dataset in dantro (yet), and
unpacking the dataset into a dantro group would reduce
functionality, the PassthroughContainer is used here. It should
behave almost the same as an xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where the xarray-dumped netcdf file is located

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	load_completely (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, will call .load()
on the loaded xr.Dataset to load it completely into memory.
Also see: xarray.Dataset.load() [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.load.html#xarray.Dataset.load].

	engine (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Which engine to use for loading. Refer to
the xarray documentation for available engines.

	**load_kwargs – Passed on to xarray.open_dataset() [https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset]

	Returns

	
	The reconstructed xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset],
	stored in a passthrough container.

	Return type

	PassthroughContainer

dantro.data_loaders.yaml module

Supplies loading functions for YAML files

	
class YamlLoaderMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Supplies functionality to load YAML files in the
DataManager.
Uses the yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function for loading the files.

	
_load_yaml(*args, **kwargs)

	Load a YAML file from the given path and create a container to
store that data in.
Uses the yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function for loading.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to load the YAML file from

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml]

	Returns
	MutableMappingContainer: The loaded YAML content as a container

	
_load_yaml_to_object(*args, **kwargs)

	Load a YAML file from the given path and create a container to
store that data in.

Uses the yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml] function for loading.

	Parameters

	
	filepath (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to load the YAML file from

	TargetCls (type [https://docs.python.org/3/library/functions.html#type]) – The class constructor

	**load_kwargs – Passed on to yayaml.io.load_yml() [https://yayaml.readthedocs.io/en/latest/api/yayaml.html#yayaml.io.load_yml]

	Returns

	The loaded YAML content as an ObjectContainer

	Return type

	ObjectContainer

dantro.data_ops package

Implements the data operations database of dantro, which is used in
the data transformation framework to apply
transformations on data using TransformationDAG.

isort:skip_file

Submodules

dantro.data_ops._base_ops module

Implements operations that need to be importable from other modules or that
are so basic that they apply to a wide range of applications.

	
BOOLEAN_OPERATORS = {'!=': <built-in function ne>, '<': <built-in function lt>, '<=': <built-in function le>, '==': <built-in function eq>, '>': <built-in function gt>, '>=': <built-in function ge>, '^': <built-in function xor>, 'contains': <built-in function contains>, 'eq': <built-in function eq>, 'ge': <built-in function ge>, 'gt': <built-in function gt>, 'in': <function <lambda>>, 'in interval': <function <lambda>>, 'le': <built-in function le>, 'lt': <built-in function lt>, 'ne': <built-in function ne>, 'not in': <function <lambda>>, 'not in interval': <function <lambda>>, 'xor': <built-in function xor>}

	Boolean binary operators

	
_make_passthrough(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Wraps a callable such that it returns its first positional argument.

This is meant for functions that operate on an object (conventionally the
first argument) and do not have a return value.
By constructing a callable using this function, it can be made compatible
with the data transformation framework.

f = setattr # f has no return value
g = _make_passtrough(f) # g will return the first argument

dantro.data_ops.apply module

Implements the application of operations on the given arguments and data

	
apply_operation(op_name: str [https://docs.python.org/3/library/stdtypes.html#str], *op_args, _ops: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, _log_level: int [https://docs.python.org/3/library/functions.html#int] = 5, **op_kwargs) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Apply an operation with the given arguments and then return its return
value.
This is used by the Data Transformation Framework and allows to invoke operations
from the data operations database, see Data Processing.

	Parameters

	
	op_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the operation to carry out; need to be part
of the operations database _ops.

	*op_args – The positional arguments to the operation

	_ops (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The operations database object to use; if None,
uses the dantro operations database.

	_log_level (int [https://docs.python.org/3/library/functions.html#int], optional) – Log level of the log messages created by
this function.

	**op_kwargs – The keyword arguments to the operation

	Returns

	The result of the operation

	Return type

	Any

	Raises

	
	BadOperationName – On invalid operation name

	DataOperationError – On failure to apply the operation

dantro.data_ops.arr_ops module

Implements data operations that work on array-like data, e.g. from numpy
or xarray.

	
apply_along_axis(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], axis: int [https://docs.python.org/3/library/functions.html#int], arr: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], *args, **kwargs) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	This is like numpy’s function of the same name, but does not try to
cast the results of func to an numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] but tries to keep
them as dtype object. Thus, the return value of this function will always
have one fewer dimension then the input array.

This goes along the equivalent formulation of
numpy.apply_along_axis() [https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis], outlined in their documentation of the
function.

	Parameters

	
	func (Callable) – The function to apply along the axis

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Which axis to apply it to

	arr (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array-like data to apply the function to

	*args – Passed to func

	**kwargs – Passed to func

	Returns

	
	with func applied along axis, reducing the array
	dimensions by one.

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	
create_mask(data: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], operator_name: str [https://docs.python.org/3/library/stdtypes.html#str], rhs_value: float [https://docs.python.org/3/library/functions.html#float]) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Given the data, returns a binary mask by applying the following
comparison: data <operator> rhs value.

	Parameters

	
	data (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The data to apply the comparison to. This is
the left-hand-side of the comparison.

	operator_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the binary operator function as
registered in the BOOLEAN_OPERATORS database.

	rhs_value (float [https://docs.python.org/3/library/functions.html#float]) – The right-hand-side value

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – On invalid operator name

	Returns

	Boolean mask

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
where(data: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], operator_name: str [https://docs.python.org/3/library/stdtypes.html#str], rhs_value: float [https://docs.python.org/3/library/functions.html#float], **kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Filter elements from the given data according to a condition. Only
those elemens where the condition is fulfilled are not masked.

Note

This typically leads to a dtype change to numpy.float64 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float64].

	Parameters

	
	data (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The data to mask

	operator_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The operator argument used in
arr_ops.create_mask()

	rhs_value (float [https://docs.python.org/3/library/functions.html#float]) – The rhs_value argument used in
arr_ops.create_mask()

	**kwargs – Passed on to .where() method call

	
count_unique(data, dims: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Applies numpy.unique() [https://numpy.org/doc/stable/reference/generated/numpy.unique.html#numpy.unique] to the given data and constructs a
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] for the results.

NaN values are filtered out.

	Parameters

	
	data – The data

	dims (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The dimensions along which to apply
np.unique. The other dimensions will be available after the
operation. If not provided it is applied along all dims.

	
populate_ndarray(objs: typing.Iterable, shape: typing.Optional[typing.Tuple[int]] = None, dtype: typing.Union[str, type, numpy.dtype] = <class 'float'>, order: str = 'C', out: typing.Optional[numpy.ndarray] = None, ufunc: typing.Optional[typing.Callable] = None) → ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Populates an empty numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of the given dtype with
the given objects by zipping over a new array of the given shape and
the sequence of objects.

	Parameters

	
	objs (Iterable) – The objects to add to the numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
These objects are added in the order they are given here. Note
that their final position inside the resulting array is
furthermore determined by the order argument.

	shape (Tuple[int [https://docs.python.org/3/library/functions.html#int]], optional) – The shape of the new array. Required
if no out array is given.

	dtype (Union[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]], optional) – dtype of the new
array. Ignored if out is given.

	order (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Order of the new array, determines iteration
order. Ignored if out is given.

	out (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – If given, populates this array rather
than an empty array.

	ufunc (Callable, optional) – If given, applies this unary function to
each element before storing it in the to-be-returned ndarray.

	Returns

	
	The populated out array or the newly created one (if
	out was not given)

	Return type

	ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On missing shape argument if out is not given

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the number of given objects did not match the array size

	
build_object_array(objs: Union [https://docs.python.org/3/library/typing.html#typing.Union][Dict [https://docs.python.org/3/library/typing.html#typing.Dict], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence]], *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]] = ('label',), fillna: Any [https://docs.python.org/3/library/typing.html#typing.Any] = None) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Creates a simple labelled multidimensional object array.

It accepts simple iterable types like dictionaries or lists and unpacks
them into the array, using the key or index (respectively) as coordinate
for the entry. For dict-like entries, multi-dimensional coordinates can be
specified by using tuples for keys.
Subsequently, list-like iterable types (list, tuple etc.) will result in
one-dimensional output array.

Warning

This data operation is built for flexibility, not for speed. It will
call the merge() operation for every
element in the objs iterable, thus being slow and potentially
creating an array with many empty elements.
To efficiently populate an n-dimensional object array, use the
populate_ndarray() operation instead
and build a labelled array from that output.

	Parameters

	
	objs (Union[Dict, Sequence]) – The objects to populate the object array
with. If dict-like, keys are assumed to encode coordinates, which
can be of the form coord0 or (coord0, coord1, …), where the
tuple-form requires as many coordinates as there are entries in the
dims argument.
If list- or tuple-like (more exactly: if missing the items
attribute) trivial indexing is used and dims needs to be 1D.

	dims (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The names of the dimensions of the
labelled array.

	fillna (Any, optional) – The fill value for entries that are not
covered by the dimensions specified by objs. Note that this
will replace all null values, which includes NaN but also
None. This operation is only called if fillna is not None.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If coordinates and/or dims argument for individual
 entries did not match.

	
multi_concat(arrs: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], *, dims: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Concatenates xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] or xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]
objects using xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat]. This function expects the xarray
objects to be pre-aligned inside the numpy object array arrs, with
the number of dimensions matching the number of concatenation operations
desired.
The position inside the array carries information on where the objects that
are to be concatenated are placed inside the higher dimensional coordinate
system.

Through multiple concatenation, the dimensionality of the contained objects
is increased by dims, while their dtype can be maintained.

For the sequential application of xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] along the outer
dimensions, the custom apply_along_axis() function is used.

	Parameters

	
	arrs (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array containing xarray objects which are to
be concatenated. Each array dimension should correspond to one of
the given dims. For each of the dimensions, the
xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] operation is applied along the axis,
effectively reducing the dimensionality of arrs to a scalar
and increasing the dimensionality of the contained xarray objects
until they additionally contain the dimensions specified in
the dims argument.

	dims (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]) – A sequence of dimension names that is assumed to
match the dimension names of the array. During each concatenation
operation, the name is passed along to xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat]
where it is used to select the dimension of the content of
arrs along which concatenation should occur.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If number of dimension names does not match the number of
 data dimensions.

	
merge(arrs: Union [https://docs.python.org/3/library/typing.html#typing.Union][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]]], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], *, reduce_to_array: bool [https://docs.python.org/3/library/functions.html#bool] = False, **merge_kwargs) → Union [https://docs.python.org/3/library/typing.html#typing.Union][Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]]

	Merges the given sequence of xarray objects into an
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset].

As a convenience, this also allows passing a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] of
dtype object containing the xarray objects.
Furthermore, if the resulting xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] contains only a
single data variable, that variable can be extracted as a
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] by setting the reduce_to_array flag,
making that array the return value of this operation.

	
expand_dims(d: Union [https://docs.python.org/3/library/typing.html#typing.Union][ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]], *, dim: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Expands the dimensions of the given object.

If the object does not support a expand_dims method call, it will be
attempted to convert it to an xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] first.

	Parameters

	
	d (Union[ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]]) – The object to expand the
dimensions of

	dim (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keys specify the dimensions to expand, values can
either be an integer specifying the length of the dimension, or a
sequence of coordinates.

	**kwargs – Passed on to the expand_dims method call. For an xarray
objects that would be xarray.DataArray.expand_dims() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.expand_dims.html#xarray.DataArray.expand_dims].

	Returns

	The input data with expanded dimensions.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
expand_object_array(d: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], *, shape: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][int [https://docs.python.org/3/library/functions.html#int]] = None, astype: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]] = None, dims: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, coords: Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'trivial', combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'concat', allow_reshaping_failure: bool [https://docs.python.org/3/library/functions.html#bool] = False, **combination_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Expands a labelled object-array that contains array-like objects into a
higher-dimensional labelled array.

d is expected to be an array of arrays, i.e. each element of the
outer array is an object that itself is an numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]-like
object. The shape is the expected shape of each of these inner
arrays. Importantly, all these arrays need to have the exact same shape!

Typically, e.g. when loading data from HDF5 files, the inner array will
not be labelled but will consist of simple numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]
objects.
The arguments dims and coords are used to label the inner arrays.

This uses multi_concat() for concatenating
or merge() for merging the object arrays
into a higher-dimensional array, where the latter option allows for missing
values.

Todo

Make reshaping and labelling optional if the inner array already is a
labelled array. In such cases, the coordinate assignment is already
done and all information for combination is already available.

	Parameters

	
	d (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The labelled object-array containing further
arrays as elements (which are assumed to be unlabelled).

	shape (Sequence[int [https://docs.python.org/3/library/functions.html#int]], optional) – Shape of the inner arrays. If not
given, the first element is used to determine the shape.

	astype (Union[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type], dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]], optional) – All inner arrays
need to have the same dtype. If this argument is given, the arrays
will be coerced to this dtype. For numeric data, float is
typically a good fallback.
Note that with combination_method == "merge", the choice here
might not be respected.

	dims (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Dimension names for labelling the
inner arrays. This is necessary for proper alignment. The number of
dimensions need to match the shape. If not given, will use
inner_dim_0 and so on.

	coords (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Coordinates of the inner arrays.
These are necessary to align the inner arrays with each other. With
coords = "trivial", trivial coordinates will be assigned to all
dimensions. If specifying a dict and giving "trivial" as value,
that dimension will be assigned trivial coordinates.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The combination method to use to
combine the object array. For concat, will use dantro’s
multi_concat(), which preserves
dtype but does not allow missing values. For merge, will use
merge(), which allows missing
values (masked using np.nan) but leads to the dtype decaying
to float.

	allow_reshaping_failure (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, the expansion is not
stopped if reshaping to shape fails for an element. This will
lead to missing values at the respective coordinates and the
combination_method will automatically be changed to merge.

	**combination_kwargs – Passed on to the selected combination function,
multi_concat() or
merge().

	Returns

	A new, higher-dimensional labelled array.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If no shape can be extracted from the first element in
 the input data d

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On bad argument values for dims, shape, coords
 or combination_method.

	
transform_coords(d: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], dim: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]], func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], *, func_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Assigns new, transformed coordinates to a data array by applying a
function on the existing coordinates.

Uses xarray.DataArray.assign_coords() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.assign_coords.html#xarray.DataArray.assign_coords] to set the new coordinates,
which returns a shallow copy of the given object.

	Parameters

	
	d (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The array to transform the dim coordinates of

	dim (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name or names of the coordinate
dimension(s) to apply func to.

	func (Callable) – The callable to apply to d.coords[dim]

	func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to the function invocation like
func(d.coords[dim], **func_kwargs)

dantro.data_ops.ctrl_ops module

Implements operations that control the behaviour of the transformation or
pipeline in general, including functions that can be used for debugging.

	
raise_SkipPlot(cond: bool [https://docs.python.org/3/library/functions.html#bool] = True, *, reason: str [https://docs.python.org/3/library/stdtypes.html#str] = '', passthrough: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]] = None)

	Raises SkipPlot to trigger that a plot is
skipped without error, see Skipping Plots.

If cond is False, this will do nothing but return the passthrough.

	Parameters

	
	cond (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to actually raise the exception

	reason (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The reason for skipping, optional

	passthrough (Any, optional) – A passthrough value which is returned if
cond did not evaluate to True.

	
print_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, end: str [https://docs.python.org/3/library/stdtypes.html#str] = '\n', fstr: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **fstr_kwargs) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Prints and passes on the data using print() [https://docs.python.org/3/library/functions.html#print].

The print operation distinguishes between dantro types (in which case some
more information is shown) and non-dantro types. If a custom format string
is given, will always use that one.

Note

This is a passthrough-function: data is always returned without any
changes. However, the print operation may lead to resolution of
proxy objects.

	Parameters

	
	data (Any) – The data to print

	end (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The end argument to the print call

	fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, will use this to format the data for
printing. The data will be the passed as first positional
argument to the format string, thus addressable by {0:} or
data (e.g. to access attributes via format-string syntax).
If the format string is not None, will always use the format
string and not use the custom formatting for dantro objects.

	**fstr_kwargs – Keyword arguments passed to the format() [https://docs.python.org/3/library/functions.html#format]
call.

	Returns

	the given data

	Return type

	Any

dantro.data_ops.db module

This module holds the data operations database

dantro.data_ops.db_tools module

Tools that help to monitor and manipulate the operations database

	
register_operation(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, skip_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, _ops: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Adds an entry to the shared operations registry.

	Parameters

	
	func (Callable) – The callable that is to be registered as operation.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the operation. If not given (and the
callable not being a lambda), will use the function name instead.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if the
operation name is already registered. This suppresses the
ValueError raised on existing operation name.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite a potentially
already existing operation of the same name. If given, this takes
precedence over skip_existing.

	_ops (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The operations database object to use; if None,
uses the dantro operations database.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On invalid name or non-callable for the func argument

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On already existing operation name and no skipping or
 overwriting enabled. Also if no name was given but the given
 callable is a lambda (which only has <lambda> as name).

	
is_operation(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, /, *, _ops: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, _reg_func: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kws)

	Decorator for registering functions with the operations database.

As an alternative to register_operation(), this decorator can be
used to register a function with the operations database right where its
defined:

from dantro.data_ops import is_operation

Operation name deduced from function name
@is_operation
def my_operation(data, *args):
 # ... do stuff here ...
 return data

Custom operation name
@is_operation("do_something")
def my_operation_with_a_custom_name(foo, bar):
 pass

Overwriting an operation of the same name
@is_operation("do_something", overwrite_existing=True)
def actually_do_something(spam, fish):
 pass

See Registering operations for general information.
For instructions on how to overwrite this decorator with a custom one, see
Customizing database tools.

	Parameters

	
	arg (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – The name that should be used in
the operation registry. If not given, will use the name of the
decorated function instead. If a callable, this refers to the
@is_operation call syntax and will use that as a function.

	_ops (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The operations database to use. If not given,
uses the dantro operations database.

	_reg_func (Callable, optional) – If given, uses that callable for
registration, which should have the same signature as
register_operation(). If None, uses dantro’s registration
function, register_operation().

	**kws – Passed to register_operation() or a potentially given
custom _reg_func.

	
available_operations(*, match: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, n: int [https://docs.python.org/3/library/functions.html#int] = 5, _ops: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns all available operation names or a fuzzy-matched subset of them.

Also see Available operations for an overview.

	Parameters

	
	match (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, fuzzy-matches the names and only
returns close matches to this name.

	n (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of close matches to return. Passed on to
difflib.get_close_matches() [https://docs.python.org/3/library/difflib.html#difflib.get_close_matches]

	_ops (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The operations database object to use; if None,
uses the dantro operations database.

	Returns

	
	All available operation names or the matched subset.
	The sequence is sorted alphabetically.

	Return type

	Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
get_operation(op_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, _ops: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Retrieve the operation’s callable

	Parameters

	
	op_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the operation

	_ops (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – The operations database object
to use; if None, uses the
dantro operations database.

	Raises

	BadOperationName – Upon invalid operation name

dantro.data_ops.expr_ops module

Implements data operations that work with expressions, e.g. lambda function
definitions or symbolic math

	
expression(expr: str, *, symbols: typing.Optional[dict] = None, evaluate: bool = True, transformations: typing.Optional[typing.Tuple[typing.Callable]] = None, astype: typing.Union[type, str] = <class 'float'>)

	Parses and evaluates a symbolic math expression using SymPy.

For parsing, uses sympy’s sympy.parsing.sympy_parser.parse_expr() [https://docs.sympy.org/latest/modules/parsing.html#sympy.parsing.sympy_parser.parse_expr].
The symbols are provided as local_dict; the global_dict is not
explicitly set and subsequently uses the sympy default value, containing
all basic sympy symbols and notations.

Note

The expression given here is not Python code, but symbolic math.
You cannot call arbitrary functions, but only those that are imported
by from sympy import *.

Hint

When using this expression as part of the Data Transformation Framework, it is
attached to a so-called syntax hook
that makes it easier to specify the symbols parameter.
See here for more information.

Warning

While the expression is symbolic math, be aware that smypy by default
interprets the ^ operator as XOR, not an exponentiation!
For exponentiation, use the ** operator or adjust the
transformations argument as specified in the sympy documentation.

Warning

The return object of this operation will only contain symbolic sympy
objects if astype is None. Otherwise, the type cast will evaluate
all symbolic objects to the numerical equivalent specified by the given
astype.

	Parameters

	
	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The expression to evaluate

	symbols (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The symbols to use

	evaluate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Controls whether sympy evaluates expr.
This may lead to a fully evaluated result, but does not guarantee
that no sympy objects are contained in the result. For ensuring
a fully numerical result, see the astype argument.

	transformations (Tuple[Callable], optional) – The transformations
argument for sympy’s
sympy.parsing.sympy_parser.parse_expr() [https://docs.sympy.org/latest/modules/parsing.html#sympy.parsing.sympy_parser.parse_expr]. By default, the
sympy standard transformations are performed.

	astype (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, performs a cast to this
data type, fully evaluating all symbolic expressions.
Default: Python float [https://docs.python.org/3/library/functions.html#float].

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Upon failing astype cast, e.g. due to free symbols
 remaining in the evaluated expression.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – When parsing of expr failed.

	Returns

	The result of the evaluated expression.

	
generate_lambda(expr: str [https://docs.python.org/3/library/stdtypes.html#str]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Generates a lambda from a string. This is useful when working with
callables in other operations.

The expr argument needs to be a valid Python
lambda expression [https://docs.python.org/3/reference/expressions.html#lambda].

Inside the lambda body, the following names are available for use:

	A large part of the builtins module

	Every name from the Python math module, e.g. sin, cos, …

	These modules (and their long form): np, xr, scipy

Internally, this uses eval but imposes the following restrictions:

	The following strings may not appear in expr: ;, __.

	There can be no nested lambda, i.e. the only allowed lambda
string is that in the beginning of expr.

	The dangerous parts from the builtins module are not available.

	Parameters

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – The expression string to evaluate into a lambda.

	Returns

	The generated Callable.

	Return type

	Callable

	Raises

	SyntaxError [https://docs.python.org/3/library/exceptions.html#SyntaxError] – Upon failed evaluation of the given expression, invalid
 expression pattern, or disallowed strings in the lambda body.

dantro.data_ops.hooks module

Implements operation hooks for the DAG parser implemented in
_dag_utils.

	
DAG_PARSER_OPERATION_HOOKS = {'expression': <function op_hook_expression>}

	Contains hooks that are invoked when a certain operation is parsed.
The values should be callables that receive operation, *args, **kwargs
and return a 3-tuple of the manipulated operation, args, kwargs.
The return values will be those that the Transformation object is created
from.

See the DAG Syntax Operation Hooks page for more information on integration and
available hooks.

Example of defining a hook and registering it:

Define hook function
def _op_hook_my_operation(
 operation, *args, **kwargs
) -> Tuple[str, list, dict]:
 # ... do stuff here ...
 return operation, args, kwargs

Register with hooks registry
from dantro.data_ops import DAG_PARSER_OPERATION_HOOKS

DAG_PARSER_OPERATION_HOOKS["my_operation"] = _op_hook_my_operation

Todo

Implement a decorator to automatically register operation hooks

	
op_hook_expression(operation, *args, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	An operation hook for the expression operation, attempting to
auto-detect which symbols are specified in the given expression.
From those, DAGTag objects are created, making it more convenient to
specify an expression that is based on other DAG tags.

The detected symbols are added to the kwargs.symbols, if no symbol of
the same name is already explicitly defined there.

This hook accepts as positional arguments both the (expr,) form and
the (prev_node, expr) form, making it more robust when the
with_previous_result flag was set.

If the expression contains the prev or previous_result symbols,
the corresponding DAGNode will be added to
the symbols additionally.

For more information on operation hooks, see DAG Syntax Operation Hooks.

dantro.groups package

The groups sub-package implements BaseDataGroup specializations.

isort:skip_file

Submodules

dantro.groups._registry module

Implements a registry for dantro group types based on
ObjectRegistry.

	
class GroupRegistry

	Bases: dantro._registry.ObjectRegistry

	
_DESC: str [https://docs.python.org/3/library/stdtypes.html#str] = 'group'

	A description string for the entries of this registry

	
_SKIP: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Default behavior for skip_existing argument

	
_OVERWRITE: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Default behavior for overwrite_existing argument

	
_EXPECTED_TYPE: Optional[Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], type [https://docs.python.org/3/library/functions.html#type]]] = (<class 'type'>,)

	If set, will check for expected types

	
_check_object(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	Checks whether the object is valid.

	
_register_via_decorator(obj: type [https://docs.python.org/3/library/functions.html#type], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kws)

	Performs the registration operations when the decorator is used to
register an object.

	
__contains__(obj_or_key: Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given argument is part of the keys or values of this
registry.

	
_decorator(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Method that can be used as a decorator for registering objects
with this registry.

	Parameters

	
	arg (Union[Any, str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name that should be used or
the object that is to be added. If not a string, this refers
to the @is_container call syntax

	**kws – Passed to register()

	
_determine_name(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Determines the object name, using a potentially given name

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
property desc: str [https://docs.python.org/3/library/stdtypes.html#str]

	

	
items()

	

	
keys()

	

	
register(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, *, skip_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, overwrite_existing: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an entry to the registry.

	Parameters

	
	obj (Any) – The object to add to the registry.

	name (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The name to use. If not given, will
deduce a name from the given object.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if an
object of that name already exists. If None, the classes
default behavior (see _SKIP) is used.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite an
entry if an object with that name already exists. If None, the
classes default behavior (see _OVERWRITE)
is used.

	
values()

	

	
GROUPS = <dantro.groups._registry.GroupRegistry object>

	The dantro data group registry object.

	
register_group(Cls: type [https://docs.python.org/3/library/functions.html#type], name: str [https://docs.python.org/3/library/stdtypes.html#str], *, skip_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Adds an entry to the shared group registry.

	Parameters

	
	Cls (type [https://docs.python.org/3/library/functions.html#type]) – The class that is to be registered as a group.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to use for registration.

	skip_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to skip registration if the
group name is already registered. This suppresses the
ValueError raised on existing group name.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite a potentially
already existing group of the same name. If set, this takes
precedence over skip_existing.

	
is_group(arg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, /, **kws)

	Decorator for registering groups with the container type registry.

As an alternative to register_group(), this decorator can be
used to register a container right where its defined:

from dantro.groups import BaseDataGroup, is_group

Group name deduced from class name
@is_group
class MyDataGroup(BaseDataGroup):
 # ... do stuff here ...
 pass

Custom group name
@is_group("my_group")
class MyDataGroup(BaseDataGroup):
 # ... do stuff here ...
 pass

Overwriting a registered group of the same name
@is_group("my_group", overwrite_existing=True)
class MyDataGroup(BaseDataGroup):
 # ... do stuff here ...
 pass

dantro.groups.dirpath module

A data group that represents a directory path and holds the corresponding
file paths as members

	
class DirectoryGroup(*args, name: str [https://docs.python.org/3/library/stdtypes.html#str], dirpath: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]] = None, strict: bool [https://docs.python.org/3/library/functions.html#bool] = True, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DirectoryGroup] = None, **kwargs)

	Bases: dantro.groups.ordered.OrderedDataGroup

A group that maps to a directory path in the file system.

	
_NEW_CONTAINER_CLS

	alias of dantro.containers.path.PathContainer

	
__init__(*args, name: str [https://docs.python.org/3/library/stdtypes.html#str], dirpath: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]] = None, strict: bool [https://docs.python.org/3/library/functions.html#bool] = True, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DirectoryGroup] = None, **kwargs)

	Sets up a DirectoryGroup instance that holds the path to a certain
directory.

By default, this group only allows members to be
PathContainer or
DirectoryGroup instances in order to
maintain an association to the filesystem directory represented by this
group.

Note

It is not actually checked whether the path points to a directory.

	Parameters

	
	*args – Passed to parent init

	dirpath (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]], optional) – A path compatible to
pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]. This path need not exist in the file
system but it should point to a directory.
If not given at initialization, it should be set afterwards.

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If not True, will allow members of this
group to be of any kind of dantro object.

	**kwargs – Passed to parent init

	
_ALLOWED_CONT_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = ('self', <class 'dantro.containers.path.PathContainer'>)

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_GROUP_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use when creating a new group via new_group().
If None, the type of the current instance is used for the new group.

	
_STORAGE_CLS

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
property fs_path: Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]

	Returns the filesystem path associated with this group by reading
the corresponding data attribute (by default: fs_path).

Note

The path this object represents may or may not exist.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

dantro.groups.graph module

In this module, the GraphGroup is
implemented, which provides an interface between hierarchically stored data
and the creation of graph objects using the networkx package and the therein
implemented networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph] classes.

See The GraphGroup for more information.

	
class GraphGroup(*args, **kwargs)

	Bases: dantro.base.BaseDataGroup

The GraphGroup class manages groups of graph data containers and
provides the possibility to create networkx graph objects using the data
inside this group.

See The GraphGroup for more information.

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = (<class 'dantro.containers.xr.XrDataContainer'>, <class 'dantro.groups.labelled.LabelledDataGroup'>)

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_GG_node_container = 'nodes'

	

	
_GG_edge_container = 'edges'

	

	
_GG_attr_directed = 'directed'

	

	
_GG_attr_parallel = 'parallel'

	

	
_GG_attr_edge_container_is_transposed = 'edge_container_is_transposed'

	

	
_GG_attr_keep_dim = 'keep_dim'

	

	
_GG_WARN_UPON_BAD_ALIGN = True

	

	
__init__(*args, **kwargs)

	Initialize a GraphGroup.

	Parameters

	
	*args – passed to dantro.base.BaseDataGroup.__init__()

	**kwargs – passed to dantro.base.BaseDataGroup.__init__()

	
property property_maps: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	The property maps associated with this group, keyed by name.

	
property node_container

	Returns the associated node container of this graph group

	
property edge_container

	Returns the associated edge container of this graph group

	
property default_keep_dim

	The default dimensions not to be squeezed during data selection as
specified in the respective group attribute.

	
_get_item_or_pmap(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]])

	Returns the object accessible via key. Apart from allowing to
retrieve objects in this group, the method additionally allows to
access data stored in property maps.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The object to retrieve.
If this is a path, will recurse down until at the end.

	Returns

	The object at key

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If no such key can be found

	
_get_data_at(*, data: Union [https://docs.python.org/3/library/typing.html#typing.Union][XrDataContainer, LabelledDataGroup], sel: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, isel: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, at_time: int [https://docs.python.org/3/library/functions.html#int] = None, at_time_idx: int [https://docs.python.org/3/library/functions.html#int] = None, keep_dim=None) → Union [https://docs.python.org/3/library/typing.html#typing.Union][DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], XrDataContainer]

	Returns a xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] containing the data
specified via the selectors sel and isel. Any dimension of
size 1 is removed from the selected data.

Warning

Any invalid key in sel and isel is ignored silently.

	Parameters

	
	data (Union[XrDataContainer, LabelledDataGroup]) – Data to select
from.

	sel (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dict of coordinate values keyed by
dimensions, passed to data.sel. Used to select data via
index label. May be given together with isel if no key
exists in both.

	isel (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dict of indexes keyed by dimensions,
passed to data.isel. Used to select data via index.
May be given together with sel if no key exists in both.

	at_time (int [https://docs.python.org/3/library/functions.html#int], optional) – Select along time dimension via index
label. Translated to sel = dict(time=at_time), potentially
overwriting an existing time entry.

	at_time_idx (int [https://docs.python.org/3/library/functions.html#int], optional) – Select along time dimension via
index. Translated to isel = dict(time=at_time_idx),
potentially overwriting an existing time entry.

	keep_dim (optional) – Iterable containing names of the dimensions
that can not be squeezed.

	Returns

	The selected data

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On keys that exist in both sel and isel

	
_prepare_edge_data(*, edges, max_tuple_size: int [https://docs.python.org/3/library/functions.html#int])

	Prepares the edge data. Depending on the
_GG_attr_edge_container_is_transposed class attribute, the edge
data is transposed or not. If the attribute does not exist, the data is
transposed only if the correct shape could unambiguously be deduced.

	Parameters

	
	edges – The edge data stored in a 2-dimensional container

	max_tuple_size (int [https://docs.python.org/3/library/functions.html#int]) – The maximum allowed edge tuple size (4 for
networkx.MultiGraph [https://networkx.org/documentation/stable/reference/classes/multigraph.html#networkx.MultiGraph], else 3). Used if the correct
shape is tried to be deduced automatically.

	Returns

	The edge data, possibly transposed

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Edge data is not 2-dimensional

	
_prepare_property_data(name: str [https://docs.python.org/3/library/stdtypes.html#str], data)

	Prepares external property data.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The properties’ name

	data – The property data

	Returns

	
	The data, potentially converted to a
	
	py:class

	~dantro.containers.xr.XrDataContainer

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On invalid type of data

	
_check_alignment(*, ent, prop)

	Checks the alignment of property data and entity (node or edge)
data. If self._GG_WARN_UPON_BAD_ALIGN is True, warn on possible
pitfalls.

	Parameters

	
	ent – The entity (node or edge) data

	prop – The property data

	
register_property_map(key: str [https://docs.python.org/3/library/stdtypes.html#str], data)

	Registers a new property map. It allows for the given data to be
accessed internally by the specified key.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key via which the registered data will be available

	data – The data to be mapped. If the given data is not an allowed
container type, an attempt is made to construct an
XrDataContainer with
the data. Only if this operation fails, will property map
registration fail.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid key

	
create_graph(*, directed: bool [https://docs.python.org/3/library/functions.html#bool] = None, parallel_edges: bool [https://docs.python.org/3/library/functions.html#bool] = None, node_props: list [https://docs.python.org/3/library/stdtypes.html#list] = None, edge_props: list [https://docs.python.org/3/library/stdtypes.html#list] = None, sel: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, isel: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, at_time: int [https://docs.python.org/3/library/functions.html#int] = None, at_time_idx: int [https://docs.python.org/3/library/functions.html#int] = None, align: bool [https://docs.python.org/3/library/functions.html#bool] = False, keep_dim=None, **graph_kwargs) → Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]

	Create a networkx networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph] (or a more specialized
graph type) object from the node and edge data associated with this
graph group. Optionally, node and edge properties can be added from
data stored or registered in the graph group.
The coordinates for the selected or squeezed dimensions of the node,
edge, and property data are stored as graph attributes in g.graph.

Note

Any pre-selection specified by sel, isel, at_time, or
at_time_idx will be applied to the node data, edge data, as
well as any given property data.

Warning

Any invalid key in sel and isel is ignored silently (see
_get_data_at()).

	Parameters

	
	directed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, the graph will be directed.
If not given, the value given by the group attribute with name
_GG_attr_directed is used instead.

	parallel_edges (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, the graph will allow
parallel edges. If not given, the value is tried to be read
from the group attribute with name _GG_attr_parallel.

	node_props (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of names specifying the
containers that contain the node property data.

	edge_props (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – List of names specifying the
containers that contain the edge property data.

	sel (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dict of coordinate values keyed by
dimensions, passed to
_get_data_at().
Used to select data via index label.

	isel (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Dict of indexes keyed by dimensions,
passed to
_get_data_at().
Used to select data via index.

	at_time (int [https://docs.python.org/3/library/functions.html#int], optional) – Select along time dimension via index
label. Translated to sel = dict(time=at_time).

	at_time_idx (int [https://docs.python.org/3/library/functions.html#int], optional) – Select along time dimension via
index. Translated to isel = dict(time=at_time_idx).

	align (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the property data is aligned
with the node/edge data using xarray.align
(default: False). The indexes of the <node/edge>_container
are used for each dimension. If the class variable
_GG_WARN_UPON_BAD_ALIGN is True, warn upon missing values
or if no re-ordering was done. Any dimension of size 1 is
squeezed and thus alignment (via align=True) will have no
effect on such dimensions.

	keep_dim (optional) – Iterable containing names of the dimensions
that can not be squeezed. Passed on to
_get_data_at().

	**graph_kwargs – Passed to the constructor of the respective
networkx graph object.

	Returns

	The networkx graph object. Depending on the provided information,
one of the following graph objects is created:
networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], networkx.DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph],
networkx.MultiGraph [https://networkx.org/documentation/stable/reference/classes/multigraph.html#networkx.MultiGraph], networkx.MultiDiGraph [https://networkx.org/documentation/stable/reference/classes/multidigraph.html#networkx.MultiDiGraph].

	
set_node_property(*, g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], name: str [https://docs.python.org/3/library/stdtypes.html#str], data=None, align: bool [https://docs.python.org/3/library/functions.html#bool] = False, keep_dim=None, **selector)

	Sets a property to every node in Graph g that is also in the
node_container of the graph group. The coordinates for the selected
or squeezed dimensions of the property data are stored as Graph
attributes (in g.graph).

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph object

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If data is None, name must specify the
container within the graph group that contains the property
values, or be valid key in property_maps. name is used
as the name for the property in the graph object, potentially
overwriting an existing property.

	data (None, optional) – If given, load node properties directly
from data. If the given data is not an allowed container
type, an attempt is made to construct an
XrDataContainer with
the data. Only if this operation fails, the node property
setting will fail.

	align (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the property data is aligned
with the node data using xarray.align. The indexes of the
node_container are used for each dimension. If the class
variable _GG_WARN_UPON_BAD_ALIGN is True, warn upon
missing values or if no re-ordering was done. Any dimension of
size 1 is squeezed and thus alignment (via align=True) will
have no effect on such dimensions.

	keep_dim (optional) – Iterable containing names of the dimensions
that can not be squeezed. Passed on to
_get_data_at().

	**selector – Specifies the selection applied to both node data and
property data. Passed on to
_get_data_at(). Use
the sel (isel) dict to select data via coordinate value
(index).

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Lenght mismatch of the selected property and node data

	
set_edge_property(*, g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], name: str [https://docs.python.org/3/library/stdtypes.html#str], data=None, align: bool [https://docs.python.org/3/library/functions.html#bool] = False, keep_dim=None, **selector)

	Sets a property to every edge in Graph g that is also in the
edge_container of the graph group. The coordinates for the selected
or squeezed dimensions of the property data are stored as Graph
attributes (in g.graph).

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The networkx graph object

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – If data is None, name must specify the
container within the graph group that contains the property
values, or be valid key in property_maps. name is used
as the name for the property in the graph object, potentially
overwriting an existing property.

	data (None, optional) – If given, load edge properties directly
from data. If the given data is not an allowed container
type, an attempt is made to construct an
XrDataContainer with
the data. Only if this operation fails, the edge property
setting will fail.

	align (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the property data is aligned
with the edge data using xarray.align. The indexes of the
edge_container are used for each dimension. If the class
variable _GG_WARN_UPON_BAD_ALIGN is True, warn upon
missing values or if no re-ordering was done. Any dimension of
size 1 is squeezed and thus alignment (via align=True) will
have no effect on such dimensions.

	keep_dim (optional) – Iterable containing names of the dimensions
that can not be squeezed. Passed on to
_get_data_at().

	**selector – Specifies the selection applied to both edge data and
property data. Passed on to
_get_data_at(). Use
the sel (isel) dict to select data via coordinate value
(index).

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Lenght mismatch of the selected property and edge data

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_NEW_GROUP_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use when creating a new group via new_group().
If None, the type of the current instance is used for the new group.

	
_STORAGE_CLS

	alias of dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

dantro.groups.labelled module

Implements the LabelledDataGroup, which allows to handle groups and
containers that can be associated with further coordinates.

This imitates the xarray selection interface and provides a uniform interface
to select data from these groups. Most importantly, it allows to combine all
the data of one group, allowing to conveniently work with heterogeneously
stored data.

	
class LabelledDataGroup(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Bases: dantro.groups.ordered.OrderedDataGroup

A group that assumes that the members it contains can be labelled
with dimension names and coordinates.

Such a group has the great benefit to provide a selection interface that
works fully on the dimension labels and coordinates and can cooperate with
the xarray selection interface, i.e. the sel and isel methods.

	
_NEW_CONTAINER_CLS

	alias of dantro.containers.xr.XrDataContainer

	
LDG_ALLOW_DEEP_SELECTION = True

	

	
LDG_DIMS = ()

	

	
LDG_EXTRACT_COORDS_FROM = 'data'

	

	
LDG_COORDS_ATTR_PREFIX = 'ext_coords__'

	

	
LDG_COORDS_MODE_ATTR_PREFIX = 'ext_coords_mode__'

	

	
LDG_COORDS_MODE_DEFAULT = 'scalar'

	

	
LDG_STRICT_ATTR_CHECKING = False

	

	
LDG_COORDS_SEPARATOR_IN_NAME = ';'

	

	
_COLLECTIVE_SELECT_THRESHOLD = 1.8

	

	
__init__(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Initialize a LabelledDataGroup

	Parameters

	
	*args – Passed on to
OrderedDataGroup

	dims (TDims, optional) – The dimensions associated with this group.
If not given, will use those defined in the LDG_DIMS class
variable. These can not be changed afterwards!

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – By which coordinate extraction mode to get
the coordinates from the group members. Can be attrs,
name, data or anything else specified in
extract_coords().

	allow_deep_selection (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep
selection. If not given, will use the
LDG_ALLOW_DEEP_SELECTION class variable’s value. Behaviour
can be changed via the property of the same name.

	**kwargs – Passed on to
OrderedDataGroup

	
property dims: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The names of the group-level dimensions this group manages.

It _may_ contain dimensions that overlap with dimension names from the
members; this is intentional.

	
property ndim: int [https://docs.python.org/3/library/functions.html#int]

	The rank of the space covered by the group-level dimensions.

	
property coords: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[dantro.utils.coords.TCoord]]

	Returns a dict-like container of group-level coordinate values keyed
by dimension.

	
property shape: Tuple[int [https://docs.python.org/3/library/functions.html#int]]

	Return the shape of the space covered by the group-level dimensions.

	
property allow_deep_selection: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether deep selection is allowed.

	
property member_map: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Returns an array that represents the space that the members of this
group span, where each value (i.e. a specific coordinate combination)
is the name of the corresponding member of this group.

Upon first call, this is computed here. If members are added, it is
tried to accomodate them in there; if not possible, the cache will be
invalidated.

The member map _may_ include empty strings, i.e. coordinate
combinations that are not covered by any member. Also, they can contain
duplicate names, as one member can cover multiple coordinates.

Note

The member map is invalidated when new members are added that can
not be accomodated in it. It will be recalculated when needed.

	
property member_map_available: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the member map is available yet.

	
isel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with an
index-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick indices.
As xarray.DataArray.isel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.isel.html#xarray.DataArray.isel], uses pandas-like
indexing, i.e.: slices do not include the terminal value.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
sel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, method: str [https://docs.python.org/3/library/stdtypes.html#str] = None, tolerance: float [https://docs.python.org/3/library/functions.html#float] = None, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with a
coordinate-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick labels.
As xarray.DataArray.sel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.sel.html#xarray.DataArray.sel], uses pandas-like indexing,
i.e.: slices include the terminal value.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Method to use for inexact matches

	tolerance (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum (absolute) distance between
original and given label for inexact matches.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
_get_coords_of(obj: AbstractDataContainer) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Extract the coordinates for the given object using the
extract_coords() function.

	Parameters

	obj (AbstractDataContainer) – The object to get the coordinates of.

	Returns

	The extracted coordinates

	Return type

	TCoordsDict

	
_add_container_callback(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Called by the base class after adding a container, this method
checks whether the member map needs to be invalidated or whether the
new container can be accomodated in it.

If it can be accomodated, the member map will be adjusted such that for
all coordinates associated with the given cont, the member map
points to the newly added container.

	Parameters

	cont (AbstractDataContainer) – The newly added container

	
_parse_indexers(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, allow_deep: bool [https://docs.python.org/3/library/functions.html#bool], **indexers_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parses the given indexer arguments and split them into indexers for
the selection of group members and deep selection.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The indexers dict, may be empty

	allow_deep (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow deep selection

	**indexers_kwargs – Additional indexers

	Returns

	(shallow indexers, deep indexers)

	Return type

	Tuple[dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If deep indexers were given but deep selection was not
 enabled

	
_get_cont(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][XrDataContainer]

	Retrieve the container from the group. If no container could be
found, returns None, which denotes that further processing should be
skipped.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container to be extracted

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the container data will be combined

	Returns

	The extracted container

	Return type

	Union[XrDataContainer, None]

	Raises

	ItemAccessError – If combination_method == "concat", on invalid
 container name.

	
_process_cont(cont, *, coords, shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Process the given container and coordinates into a data array;
this applies selection along container dimensions that overlap with
the group dimensions as well as deep selection.

	Parameters

	
	cont – The container to be processed

	coords – The DataArrayCoordinates of the given container in the
preselected member map.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers that were used to preselect the
member map.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied to the container

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The processed container data

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In name mode, on conflicting non-dimension
 container coordinates.

	
_select(*, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Preselect the member map (if needed) and designate a suitable method
for further processing and selection based on the given combination
method and indexers.

If possible, take shortcuts when selecting all data or when selecting
data from a single group member.

	Parameters

	
	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine the member data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the group-level.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the member-level
only.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index.

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The selected data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid combination_method.

	
_select_single(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from a single group member. Expects the preselected
member map to contain only a single valid container name.

	
_select_all_merge() → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select all group data by directly merging all containers. This
circumvents building the member map. This might fail, e.g. if there are
conflicting or duplicate coordinates.

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_GROUP_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use when creating a new group via new_group().
If None, the type of the current instance is used for the new group.

	
_STORAGE_CLS

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_select_generic(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from group members using the given indexers and combine
it via the specified method. If deep indexers are given, apply the deep
indexing on each of the members.

This method receives a labelled array of container names, on which the
selection already took place. The aim is now to align the objects these
names refer to, including their coordinates, and thereby construct an
array that contains both the dimensions given by the cont_names
array and each members’ data dimensions.

Available combination methods are based either on
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge] operations or xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] along
each dimension.
For both these combination methods, the members of this group need to
be prepared such that the operation can be applied, i.e.: they need to
already be in an array capable of that operation and they need to
directly or indirectly preserve coordinate information.

For that purpose, an object-array is constructed holding the processed
member data. As the xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] and
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] types have issues with handling
array-like objects in object arrays, this is done via a
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	cont_names (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The pre-selected member map object,
i.e. a labelled array containing names of the desired members
that are to be combined.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine them: concat,
try_concat, or merge. Concatenation will allow
preserving the dtype of the underlying data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments that were used for the
group member selection.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments for deep selection to be
done before combination.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the deep indexing should take place by
index; if False, will use label-based selection.

	**sel_kwargs – Passed on to sel().

	Returns

	
	The selected data of the members from
	cont_names, combined using the given combination method.

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On conflicting coordinate information on group-level
 and member-level.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – In concat mode, upon missing members.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
classmethod _combine_by_merge(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by merging using xarray’s
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge].

	Parameters

	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined.

	Returns

	
	All datasets, aligned and combined via
	xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	
classmethod _combine_by_concatenation(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by concatenation using xarray’s
xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] and subsequent application along all
dimensions specified in dims.

	Parameters

	
	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined by
concatenation.

	dims (TDims) – The dimension names corresponding to all the
dimensions of the dsets array.

	Returns

	The dataset resulting from the concatenation

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

dantro.groups.ordered module

In this module, the BaseDataGroup is specialized for holding members in a
specific order.

	
class OrderedDataGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.base.BaseDataGroup, collections.abc.MutableMapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping]

The OrderedDataGroup class manages groups of data containers, preserving
the order in which they were added to this group.

It uses an collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] to associate containers
with this group.

	
_STORAGE_CLS

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_NEW_GROUP_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use when creating a new group via new_group().
If None, the type of the current instance is used for the new group.

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataGroup, which can store other containers and
attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	containers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The containers that are to be stored
as members of this group. If given, these are added one by one
using the .add method.

	attrs (None, optional) – A mapping that is stored as attributes

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the group was added to the
parent group, i.e. after initialization finished.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
class IndexedDataGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.mixins.indexing.IntegerItemAccessMixin, dantro.groups.ordered.OrderedDataGroup

The IndexedDataGroup class holds members that are of the same type and
have names that can directly be interpreted as positive integers.

Especially, this group maintains the correct order of members according to
integer ordering.

To speed up element insertion, this group keeps track of recently added
container names, which are then used as hints for subsequent insertions.

Note

Albeit the members of this group being ordered, item access still
refers to the names of the members, not their index within the
sequence!

Warning

With the underlying ordering mechanism of
KeyOrderedDict, the performance
of this data structure is sensitive to the insertion order of elements.

It is fastest for in-order insertions, where the complexity per
insertion is constant (regardless of whether insertion order is
ascending or descending).
For out-of-order insertions, the whole key map may have to be
searched, in which case the complexity scales with the number of
elements in this group.

Hint

If experiencing trouble with the performance of this data structure,
sort elements before adding them to this group.

	
__last_keys: Dict[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	

	
_STORAGE_CLS

	alias of dantro.utils.ordereddict.IntOrderedDict

	
_NEW_GROUP_CLS

	alias of dantro.groups.ordered.OrderedDataGroup

	
key_at_idx(idx: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a key by its index within the container. Can be negative.

	Parameters

	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index within the member sequence

	Returns

	The desired key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Index out of range

	
keys_as_int() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns an iterator over keys as integer values

	
_add_container_to_data(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Adds a container to the underlying integer-ordered dictionary.

Unlike the parent method, this uses
insert() in order to
provide hints regarding the insertion position. It is optimised for
insertion in ascending order.

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

	For ipython integration, return a list of available keys.

Unlike the BaseDataGroup method, which returns a list of strings, this
returns a list of integers.

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataGroup, which can store other containers and
attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	containers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The containers that are to be stored
as members of this group. If given, these are added one by one
using the .add method.

	attrs (None, optional) – A mapping that is stored as attributes

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the group was added to the
parent group, i.e. after initialization finished.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Makes sure a key is a string

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

dantro.groups.psp module

This module implements BaseDataContainer
specializations that make use of features from the
paramspace [https://gitlab.com/blsqr/paramspace] package, in particular the
ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] class.

	
class ParamSpaceStateGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Bases: dantro.groups.ordered.OrderedDataGroup

A ParamSpaceStateGroup is meant to be used as a member group of the
ParamSpaceGroup.

While its own name need be interpretable as a positive integer (enforced
in the enclosing ParamSpaceGroup but also
here), it can hold members with any name.

	
_NEW_GROUP_CLS

	alias of dantro.groups.ordered.OrderedDataGroup

	
_check_name(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called by __init__ and overwritten here to check the name.

	
property coords: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Retrieves the coordinates of this group within the parameter space
described by the ParamSpaceGroup
this group is enclosed in.

	Returns

	
	The coordinates of this group, keys being dimension names and
	values being the coordinate values for this group.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_STORAGE_CLS

	alias of collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	
__contains__(cont: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given container is in this group or not.

If this is a data tree object, it will be checked whether this
specific instance is part of the group, using is-comparison.

Otherwise, assumes that cont is a valid argument to the
__getitem__() method (a key or key
sequence) and tries to access the item at that path, returning True
if this succeeds and False if not.

Lookup complexity is that of item lookup (scalar) for both name and
object lookup.

	Parameters

	cont (Union[str [https://docs.python.org/3/library/stdtypes.html#str], AbstractDataContainer]) – The name of the
container, a path, or an object to check via identity
comparison.

	Returns

	
	Whether the given container object is part of this group or
	whether the given path is accessible from this group.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__delitem__(key: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Deletes an item from the group

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → AbstractDataContainer

	Looks up the given key and returns the corresponding item.

This supports recursive relative lookups in two ways:

	By supplying a path as a string that includes the path separator.
For example, foo/bar/spam walks down the tree along the given
path segments.

	By directly supplying a key sequence, i.e. a list or tuple of
key strings.

With the last path segment, it is possible to access an element that
is no longer part of the data tree; successive lookups thus need to
use the interface of the corresponding leaf object of the data tree.

Absolute lookups, i.e. from path /foo/bar, are not possible!

Lookup complexity is that of the underlying data structure: for groups
based on dict-like storage containers, lookups happen in constant time.

Note

This method aims to replicate the behavior of POSIX paths.

Thus, it can also be used to access the element itself or the
parent element: Use . to refer to this object and .. to
access this object’s parent.

	Parameters

	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The name of the object to retrieve or
a path via which it can be found in the data tree.

	Returns

	
	The object at key, which concurs to the
	dantro tree interface.

	Return type

	AbstractDataContainer

	Raises

	ItemAccessError – If no object could be found at the given key
 or if an absolute lookup, starting with /, was attempted.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, attrs=None, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][AbstractDataGroup] = None)

	Initialize a BaseDataGroup, which can store other containers and
attributes.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this data container

	containers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The containers that are to be stored
as members of this group. If given, these are added one by one
using the .add method.

	attrs (None, optional) – A mapping that is stored as attributes

	parent (AbstractDataGroup, optional) – If known, the parent group,
which can be used to extract information during initialization.
Note that linking occurs only after the group was added to the
parent group, i.e. after initialization finished.

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], val: BaseDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is used to allow access to the content of containers of
this group. For adding an element to this group, use the add method!

	Parameters

	
	key (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The key to which to set the value.
If this is a path, will recurse down to the lowest level.
Note that all intermediate keys need to be present.

	val (BaseDataContainer) – The value to set

	Returns

	None

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If trying to add an element to this group, which should
 be done via the add method.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Performs the operation of adding the container to the _data. This
can be used by subclasses to make more elaborate things while adding
data, e.g. specify ordering …

	NOTE This method should NEVER be called on its own, but only via the
	_add_container method, which takes care of properly linking the
container that is to be added.

NOTE After adding, the container need be reachable under its .name!

	Parameters

	cont – The container to add

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	For ipython integration, return a list of available keys

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
keys()

	Returns an iterator over the container names in this group.

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
class ParamSpaceGroup(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], pspace: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]] = None, containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, **kwargs)

	Bases: dantro.mixins.indexing.PaddedIntegerItemAccessMixin, dantro.groups.ordered.IndexedDataGroup

The ParamSpaceGroup is associated with a
paramspace.paramspace.ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] object and the
loaded results of an iteration over this parameter space.

Thus, the groups that are stored in the ParamSpaceGroup need all relate to
a state of the parameter space, identified by a zero-padded string name.
In fact, this group allows no other kinds of groups stored inside.

To make access to a specific state easier, it allows accessing a state by
its state number as integer.

	
_PSPGRP_PSPACE_ATTR_NAME = 'pspace'

	

	
_PSPGRP_TRANSFORMATOR = None

	

	
_NEW_GROUP_CLS

	alias of dantro.groups.psp.ParamSpaceStateGroup

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = (<class 'dantro.groups.psp.ParamSpaceStateGroup'>,)

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
__init__(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], pspace: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]] = None, containers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, **kwargs)

	Initialize a OrderedDataGroup from the list of given containers.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this group.

	pspace (ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], optional) – Can already
pass a ParamSpace object here.

	containers (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – A list of containers to add, which
need to be
ParamSpaceStateGroup objects.

	**kwargs – Further initialisation kwargs, e.g. attrs …

	
property pspace: Optional[ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Reads the entry named _PSPGRP_PSPACE_ATTR_NAME in .attrs and
returns a ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] object, if
available there.

	Returns

	
	The associated
	parameter space, or None, if there is none associated yet.

	Return type

	Union[ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], None]

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	Which class to use for creating a new container via call to the
new_container() method. If None, the type needs to be specified
explicitly in the method call.

	
_PADDED_INT_FSTR: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	The format string to generate a padded integer; deduced upon first call

	
_PADDED_INT_KEY_WIDTH: int [https://docs.python.org/3/library/functions.html#int] = None

	The number of digits of the padded string representing the integer

	
_PADDED_INT_MAX_VAL: int [https://docs.python.org/3/library/functions.html#int] = None

	The allowed maximum value of an integer key; checked only in strict mode

	
_PADDED_INT_STRICT_CHECKING: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether to use strict checking when parsing keys, i.e. check that the
range of keys is valid and an error is thrown when an integer key was
given that cannot be represented consistently by a padded string of the
determined key width.

	
_STORAGE_CLS

	alias of dantro.utils.ordereddict.IntOrderedDict

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Called after a container was added.

	
_add_container_to_data(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Adds a container to the underlying integer-ordered dictionary.

Unlike the parent method, this uses
insert() in order to
provide hints regarding the insertion position. It is optimised for
insertion in ascending order.

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is invoked when adding a member to a group and makes
sure the name of the added group is correctly zero-padded.

Also, upon first call, communicates the zero padded integer key width,
i.e.: the length of the container name, to the
PaddedIntegerItemAccessMixin.

	Parameters

	cont – The member container to add

	Returns
	None: No return value needed

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

	For ipython integration, return a list of available keys.

Unlike the BaseDataGroup method, which returns a list of strings, this
returns a list of integers.

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Parse a potentially integer key to a zero-padded string

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property data

	The stored data.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
key_at_idx(idx: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a key by its index within the container. Can be negative.

	Parameters

	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index within the member sequence

	Returns

	The desired key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Index out of range

	
keys()

	Returns an iterator over the container names in this group.

	
keys_as_int() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns an iterator over keys as integer values

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property only_default_data_present: bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true if only data for the default point in parameter space
is available in this group.

	
property padded_int_key_width: Optional[int [https://docs.python.org/3/library/functions.html#int]]

	Returns the width of the zero-padded integer key or None, if it is
not already specified.

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__last_keys: Dict[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
select(*, field: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, fields: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, subspace: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'concat', idx_as_label: bool [https://docs.python.org/3/library/functions.html#bool] = False, base_path: str [https://docs.python.org/3/library/stdtypes.html#str] = None, **kwargs) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Selects a multi-dimensional slab of this ParamSpaceGroup and the
specified fields and returns them bundled into an
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] with labelled dimensions and coordinates.

	Parameters

	
	field (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – The field of data to
select. Should be path or a list of strings that points to an
entry in the data tree. To select multiple fields, do not pass
this argument but use the fields argument.

	fields (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – A dict specifying the
fields that are to be loaded into the dataset. Keys will be
the names of the resulting variables, while values should
specify the path to the field in the data tree. Thus, they can
be strings, lists of strings or dicts with the path key
present. In the latter case, a dtype can be specified via the
dtype key in the dict.

	subspace (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Selector for a subspace of the
parameter space. Adheres to the parameter space’s
activate_subspace() [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace.activate_subspace]
signature.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine the selected datasets.

	concat: concatenate sequentially along all parameter
space dimensions. This can preserve the data type but
it does not work if one data point is missing.

	merge: merge always works, even if data points are
missing, but will convert all dtypes to float.

	idx_as_label (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, adds the trivial indices
as labels for those dimensions where coordinate labels were not
extractable from the loaded field. This allows merging for data
with different extends in an unlabelled dimension.

	base_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, path specifications for
each field can be seen as relative to this path

	**kwargs – Passed along either to xr.concat or xr.merge, depending
on the method argument.

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – On invalid state key.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised in multiple scenarios: If no
 ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace] was
 associated with this group, for wrong argument values, if the
 data to select cannot be extracted with the given argument
 values, exceptions passed on from xarray.

	Returns

	
	The selected hyperslab of the parameter space,
	holding the desired fields.

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

dantro.groups.time_series module

Implements LabelledDataGroup
specializations for time series data.

	
class TimeSeriesGroup(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Bases: dantro.groups.labelled.LabelledDataGroup, dantro.groups.ordered.IndexedDataGroup

A time-series group assumes that each stored member refers to one
point in time, where the name is to be interpreted as the time coordinate.

For more information on selection methods, see:

	sel()

	isel()

	
LDG_DIMS = ('time',)

	Expected dimension names. There is only one dimension in a
TimeSeriesGroup: time

	
LDG_EXTRACT_COORDS_FROM = 'name'

	Where to extract time coordinates from. Here, the container name is
expected to be the time coordinate.

	
LDG_ALLOW_DEEP_SELECTION = True

	

	
LDG_COORDS_ATTR_PREFIX = 'ext_coords__'

	

	
LDG_COORDS_MODE_ATTR_PREFIX = 'ext_coords_mode__'

	

	
LDG_COORDS_MODE_DEFAULT = 'scalar'

	

	
LDG_COORDS_SEPARATOR_IN_NAME = ';'

	

	
LDG_STRICT_ATTR_CHECKING = False

	

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COLLECTIVE_SELECT_THRESHOLD = 1.8

	

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS

	alias of dantro.containers.xr.XrDataContainer

	
_NEW_GROUP_CLS

	alias of dantro.groups.ordered.OrderedDataGroup

	
_STORAGE_CLS

	alias of dantro.utils.ordereddict.IntOrderedDict

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__init__(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Initialize a LabelledDataGroup

	Parameters

	
	*args – Passed on to
OrderedDataGroup

	dims (TDims, optional) – The dimensions associated with this group.
If not given, will use those defined in the LDG_DIMS class
variable. These can not be changed afterwards!

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – By which coordinate extraction mode to get
the coordinates from the group members. Can be attrs,
name, data or anything else specified in
extract_coords().

	allow_deep_selection (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep
selection. If not given, will use the
LDG_ALLOW_DEEP_SELECTION class variable’s value. Behaviour
can be changed via the property of the same name.

	**kwargs – Passed on to
OrderedDataGroup

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Called by the base class after adding a container, this method
checks whether the member map needs to be invalidated or whether the
new container can be accomodated in it.

If it can be accomodated, the member map will be adjusted such that for
all coordinates associated with the given cont, the member map
points to the newly added container.

	Parameters

	cont (AbstractDataContainer) – The newly added container

	
_add_container_to_data(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Adds a container to the underlying integer-ordered dictionary.

Unlike the parent method, this uses
insert() in order to
provide hints regarding the insertion position. It is optimised for
insertion in ascending order.

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
classmethod _combine_by_concatenation(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by concatenation using xarray’s
xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] and subsequent application along all
dimensions specified in dims.

	Parameters

	
	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined by
concatenation.

	dims (TDims) – The dimension names corresponding to all the
dimensions of the dsets array.

	Returns

	The dataset resulting from the concatenation

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	
classmethod _combine_by_merge(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by merging using xarray’s
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge].

	Parameters

	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined.

	Returns

	
	All datasets, aligned and combined via
	xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_get_cont(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][XrDataContainer]

	Retrieve the container from the group. If no container could be
found, returns None, which denotes that further processing should be
skipped.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container to be extracted

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the container data will be combined

	Returns

	The extracted container

	Return type

	Union[XrDataContainer, None]

	Raises

	ItemAccessError – If combination_method == "concat", on invalid
 container name.

	
_get_coords_of(obj: AbstractDataContainer) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Extract the coordinates for the given object using the
extract_coords() function.

	Parameters

	obj (AbstractDataContainer) – The object to get the coordinates of.

	Returns

	The extracted coordinates

	Return type

	TCoordsDict

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

	For ipython integration, return a list of available keys.

Unlike the BaseDataGroup method, which returns a list of strings, this
returns a list of integers.

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_parse_indexers(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, allow_deep: bool [https://docs.python.org/3/library/functions.html#bool], **indexers_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parses the given indexer arguments and split them into indexers for
the selection of group members and deep selection.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The indexers dict, may be empty

	allow_deep (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow deep selection

	**indexers_kwargs – Additional indexers

	Returns

	(shallow indexers, deep indexers)

	Return type

	Tuple[dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If deep indexers were given but deep selection was not
 enabled

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Makes sure a key is a string

	
_process_cont(cont, *, coords, shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Process the given container and coordinates into a data array;
this applies selection along container dimensions that overlap with
the group dimensions as well as deep selection.

	Parameters

	
	cont – The container to be processed

	coords – The DataArrayCoordinates of the given container in the
preselected member map.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers that were used to preselect the
member map.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied to the container

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The processed container data

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In name mode, on conflicting non-dimension
 container coordinates.

	
_select(*, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Preselect the member map (if needed) and designate a suitable method
for further processing and selection based on the given combination
method and indexers.

If possible, take shortcuts when selecting all data or when selecting
data from a single group member.

	Parameters

	
	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine the member data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the group-level.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the member-level
only.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index.

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The selected data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid combination_method.

	
_select_all_merge() → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select all group data by directly merging all containers. This
circumvents building the member map. This might fail, e.g. if there are
conflicting or duplicate coordinates.

	
_select_generic(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from group members using the given indexers and combine
it via the specified method. If deep indexers are given, apply the deep
indexing on each of the members.

This method receives a labelled array of container names, on which the
selection already took place. The aim is now to align the objects these
names refer to, including their coordinates, and thereby construct an
array that contains both the dimensions given by the cont_names
array and each members’ data dimensions.

Available combination methods are based either on
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge] operations or xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] along
each dimension.
For both these combination methods, the members of this group need to
be prepared such that the operation can be applied, i.e.: they need to
already be in an array capable of that operation and they need to
directly or indirectly preserve coordinate information.

For that purpose, an object-array is constructed holding the processed
member data. As the xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] and
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] types have issues with handling
array-like objects in object arrays, this is done via a
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	cont_names (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The pre-selected member map object,
i.e. a labelled array containing names of the desired members
that are to be combined.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine them: concat,
try_concat, or merge. Concatenation will allow
preserving the dtype of the underlying data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments that were used for the
group member selection.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments for deep selection to be
done before combination.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the deep indexing should take place by
index; if False, will use label-based selection.

	**sel_kwargs – Passed on to sel().

	Returns

	
	The selected data of the members from
	cont_names, combined using the given combination method.

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On conflicting coordinate information on group-level
 and member-level.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – In concat mode, upon missing members.

	
_select_single(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from a single group member. Expects the preselected
member map to contain only a single valid container name.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property allow_deep_selection: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether deep selection is allowed.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property coords: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[dantro.utils.coords.TCoord]]

	Returns a dict-like container of group-level coordinate values keyed
by dimension.

	
property data

	The stored data.

	
property dims: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The names of the group-level dimensions this group manages.

It _may_ contain dimensions that overlap with dimension names from the
members; this is intentional.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
isel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with an
index-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick indices.
As xarray.DataArray.isel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.isel.html#xarray.DataArray.isel], uses pandas-like
indexing, i.e.: slices do not include the terminal value.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
key_at_idx(idx: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a key by its index within the container. Can be negative.

	Parameters

	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index within the member sequence

	Returns

	The desired key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Index out of range

	
keys()

	Returns an iterator over the container names in this group.

	
keys_as_int() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns an iterator over keys as integer values

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property member_map: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Returns an array that represents the space that the members of this
group span, where each value (i.e. a specific coordinate combination)
is the name of the corresponding member of this group.

Upon first call, this is computed here. If members are added, it is
tried to accomodate them in there; if not possible, the cache will be
invalidated.

The member map _may_ include empty strings, i.e. coordinate
combinations that are not covered by any member. Also, they can contain
duplicate names, as one member can cover multiple coordinates.

Note

The member map is invalidated when new members are added that can
not be accomodated in it. It will be recalculated when needed.

	
property member_map_available: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the member map is available yet.

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property ndim: int [https://docs.python.org/3/library/functions.html#int]

	The rank of the space covered by the group-level dimensions.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
sel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, method: str [https://docs.python.org/3/library/stdtypes.html#str] = None, tolerance: float [https://docs.python.org/3/library/functions.html#float] = None, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with a
coordinate-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick labels.
As xarray.DataArray.sel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.sel.html#xarray.DataArray.sel], uses pandas-like indexing,
i.e.: slices include the terminal value.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Method to use for inexact matches

	tolerance (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum (absolute) distance between
original and given label for inexact matches.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property shape: Tuple[int [https://docs.python.org/3/library/functions.html#int]]

	Return the shape of the space covered by the group-level dimensions.

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__last_keys: Dict[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
class HeterogeneousTimeSeriesGroup(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Bases: dantro.groups.time_series.TimeSeriesGroup

This extends the TimeSeriesGroup
by configuring it such that it retrieves its coordinates not from the name
of the members contained in it but from _their_ data.

It still manages only the time dimension, which is now overlapping with
the time dimension in the members of this group. However, the
py:class:~dantro.groups.labelled.LabelledDataGroup can handle this
overlap and provides a uniform selection interface that allows combining
this heterogeneously stored data.

This becomes especially useful in cases where the members of this group
store data with the following properties:

	Potentially different coordiantes than the coordinates of other
members of the group.

	Containing time information for more than a single time coordinate

	No guarantee for overlaps between time dimension or any other
dimension.

As such it is suitable to work with data that represents ensembles that
frequently change not only their size but also their identifying labels.
Additionally, it supports them not being stored in regular intervals but
only upon a change in coordinates.

	
LDG_ALLOW_DEEP_SELECTION = True

	

	
LDG_COORDS_ATTR_PREFIX = 'ext_coords__'

	

	
LDG_COORDS_MODE_ATTR_PREFIX = 'ext_coords_mode__'

	

	
LDG_COORDS_MODE_DEFAULT = 'scalar'

	

	
LDG_COORDS_SEPARATOR_IN_NAME = ';'

	

	
LDG_DIMS = ('time',)

	Expected dimension names. There is only one dimension in a
TimeSeriesGroup: time

	
LDG_STRICT_ATTR_CHECKING = False

	

	
_ALLOWED_CONT_TYPES: Optional[tuple [https://docs.python.org/3/library/stdtypes.html#tuple]] = None

	The types that are allowed to be stored in this group. If None, all
types derived from the dantro base classes are allowed.
This applies to both containers and groups that are added to this group.

Hint

To add the type of the current object, add a string entry self to
the tuple. This will be resolved to type(self) at invocation.

	
_ATTRS_CLS

	alias of dantro.base.BaseDataAttrs

	
_COLLECTIVE_SELECT_THRESHOLD = 1.8

	

	
_COND_TREE_CONDENSE_THRESH = 10

	Condensed tree representation threshold parameter

	
_COND_TREE_MAX_LEVEL = 10

	Condensed tree representation maximum level

	
_DATA_CONTAINER_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data container types. Used in
string-based lookup of container types in new_container().

	
_DATA_GROUP_CLASSES: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]] = None

	Mapping from strings to available data group types. Used in
string-based lookup of group types in new_group().

	
_NEW_CONTAINER_CLS

	alias of dantro.containers.xr.XrDataContainer

	
_NEW_GROUP_CLS

	alias of dantro.groups.ordered.OrderedDataGroup

	
_STORAGE_CLS

	alias of dantro.utils.ordereddict.IntOrderedDict

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
__format__(spec_str: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Creates a formatted string from the given specification.

Invokes further methods which are prefixed by _format_.

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__init__(*args, dims: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mode: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, allow_deep_selection: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs)

	Initialize a LabelledDataGroup

	Parameters

	
	*args – Passed on to
OrderedDataGroup

	dims (TDims, optional) – The dimensions associated with this group.
If not given, will use those defined in the LDG_DIMS class
variable. These can not be changed afterwards!

	mode (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – By which coordinate extraction mode to get
the coordinates from the group members. Can be attrs,
name, data or anything else specified in
extract_coords().

	allow_deep_selection (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep
selection. If not given, will use the
LDG_ALLOW_DEEP_SELECTION class variable’s value. Behaviour
can be changed via the property of the same name.

	**kwargs – Passed on to
OrderedDataGroup

	
__iter__()

	Returns an iterator over the OrderedDict

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of members in this group.

	
__repr__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Same as __str__

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
__str__() → str [https://docs.python.org/3/library/stdtypes.html#str]

	An info string, that describes the object. This invokes the
formatting helpers to show the log string (type and name) as well as
the info string of this object.

	
_abc_impl = <_abc._abc_data object>

	

	
_add_container(cont, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool])

	Private helper method to add a container to this group.

	
_add_container_callback(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	Called by the base class after adding a container, this method
checks whether the member map needs to be invalidated or whether the
new container can be accomodated in it.

If it can be accomodated, the member map will be adjusted such that for
all coordinates associated with the given cont, the member map
points to the newly added container.

	Parameters

	cont (AbstractDataContainer) – The newly added container

	
_add_container_to_data(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Adds a container to the underlying integer-ordered dictionary.

Unlike the parent method, this uses
insert() in order to
provide hints regarding the insertion position. It is optimised for
insertion in ascending order.

	
_attrs = None

	The attribute that data attributes will be stored to

	
_check_cont(cont) → None [https://docs.python.org/3/library/constants.html#None]

	Can be used by a subclass to check a container before adding it to
this group. Is called by _add_container before checking whether the
object exists or not.

This is not expected to return, but can raise errors, if something
did not work out as expected.

	Parameters

	cont – The container to check

	
_check_data(data: Any [https://docs.python.org/3/library/typing.html#typing.Any]) → None [https://docs.python.org/3/library/constants.html#None]

	This method can be used to check the data provided to this container

It is called before the data is stored in the __init__ method and
should raise an exception or create a warning if the data is not as
desired.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

Note

The CheckDataMixin provides a
generalised implementation of this method to perform some type
checks and react to unexpected types.

	Parameters

	data (Any) – The data to check

	
_check_name(new_name: str [https://docs.python.org/3/library/stdtypes.html#str]) → None [https://docs.python.org/3/library/constants.html#None]

	Called from name.setter and can be used to check the name that the
container is supposed to have. On invalid name, this should raise.

This method can be subclassed to implement more specific behaviour. To
propagate the parent classes’ behaviour the subclassed method should
always call its parent method using super().

	Parameters

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name, which is to be checked.

	
classmethod _combine_by_concatenation(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by concatenation using xarray’s
xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] and subsequent application along all
dimensions specified in dims.

	Parameters

	
	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined by
concatenation.

	dims (TDims) – The dimension names corresponding to all the
dimensions of the dsets array.

	Returns

	The dataset resulting from the concatenation

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	
classmethod _combine_by_merge(dsets: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Combine the given datasets by merging using xarray’s
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge].

	Parameters

	dsets (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The object-dtype array of
xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] objects that are to be combined.

	Returns

	
	All datasets, aligned and combined via
	xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	
_determine_container_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new container.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_CONTAINER_CLS
class variable. If a string, tries to extract it from the class
variable _DATA_CONTAINER_CLASSES dict.
Otherwise, assumes this is already a type.

	Returns

	The container class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_group_type(Cls: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine the type to use for a new group.

	Parameters

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If None, uses the _NEW_GROUP_CLS class
variable. If that one is not set, uses type(self).
If a string, tries to extract it from the class variable
_DATA_GROUP_CLASSES dict.
Otherwise, assumes Cls is already a type.

	Returns

	The group class to use

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the string class name was not registered

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If no default class variable was set

	
_determine_type(T: Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], *, default: type [https://docs.python.org/3/library/functions.html#type], registry: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) → type [https://docs.python.org/3/library/functions.html#type]

	Helper function to determine a type by name, falling back to a
default type or looking it up from a dict-like registry if it is a
string.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

	
_format_cls_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the class name

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns an info string that is used
to characterize this object. Does NOT include name and classname!

	
_format_logstr() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the log string, a combination
of class name and name

	
_format_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the name

	
_format_path() → str [https://docs.python.org/3/library/stdtypes.html#str]

	A __format__ helper function: returns the path to this container

	
_format_tree() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_format_tree_condensed() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default tree representation of this group by invoking
the .tree property

	
_get_cont(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][XrDataContainer]

	Retrieve the container from the group. If no container could be
found, returns None, which denotes that further processing should be
skipped.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the container to be extracted

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How the container data will be combined

	Returns

	The extracted container

	Return type

	Union[XrDataContainer, None]

	Raises

	ItemAccessError – If combination_method == "concat", on invalid
 container name.

	
_get_coords_of(obj: AbstractDataContainer) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Extract the coordinates for the given object using the
extract_coords() function.

	Parameters

	obj (AbstractDataContainer) – The object to get the coordinates of.

	Returns

	The extracted coordinates

	Return type

	TCoordsDict

	
_ipython_key_completions_() → List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]

	For ipython integration, return a list of available keys.

Unlike the BaseDataGroup method, which returns a list of strings, this
returns a list of integers.

	
_link_child(*, new_child: BaseDataContainer, old_child: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseDataContainer] = None)

	Links the new_child to this class, unlinking the old one.

This method should be called from any method that changes which items
are associated with this group.

	
_lock_hook()

	Invoked upon locking.

	
_parse_indexers(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, allow_deep: bool [https://docs.python.org/3/library/functions.html#bool], **indexers_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parses the given indexer arguments and split them into indexers for
the selection of group members and deep selection.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The indexers dict, may be empty

	allow_deep (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to allow deep selection

	**indexers_kwargs – Additional indexers

	Returns

	(shallow indexers, deep indexers)

	Return type

	Tuple[dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If deep indexers were given but deep selection was not
 enabled

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Makes sure a key is a string

	
_process_cont(cont, *, coords, shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Process the given container and coordinates into a data array;
this applies selection along container dimensions that overlap with
the group dimensions as well as deep selection.

	Parameters

	
	cont – The container to be processed

	coords – The DataArrayCoordinates of the given container in the
preselected member map.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers that were used to preselect the
member map.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied to the container

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The processed container data

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In name mode, on conflicting non-dimension
 container coordinates.

	
_select(*, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Preselect the member map (if needed) and designate a suitable method
for further processing and selection based on the given combination
method and indexers.

If possible, take shortcuts when selecting all data or when selecting
data from a single group member.

	Parameters

	
	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine the member data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the group-level.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexers to be applied on the member-level
only.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to select by index.

	drop (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to drop coordinate variables instead
of making them scalar.

	**sel_kwargs – Passed to sel().

	Returns

	The selected data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid combination_method.

	
_select_all_merge() → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select all group data by directly merging all containers. This
circumvents building the member map. This might fail, e.g. if there are
conflicting or duplicate coordinates.

	
_select_generic(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], *, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from group members using the given indexers and combine
it via the specified method. If deep indexers are given, apply the deep
indexing on each of the members.

This method receives a labelled array of container names, on which the
selection already took place. The aim is now to align the objects these
names refer to, including their coordinates, and thereby construct an
array that contains both the dimensions given by the cont_names
array and each members’ data dimensions.

Available combination methods are based either on
xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge] operations or xarray.concat() [https://docs.xarray.dev/en/stable/generated/xarray.concat.html#xarray.concat] along
each dimension.
For both these combination methods, the members of this group need to
be prepared such that the operation can be applied, i.e.: they need to
already be in an array capable of that operation and they need to
directly or indirectly preserve coordinate information.

For that purpose, an object-array is constructed holding the processed
member data. As the xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset] and
xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] types have issues with handling
array-like objects in object arrays, this is done via a
numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	Parameters

	
	cont_names (DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]) – The pre-selected member map object,
i.e. a labelled array containing names of the desired members
that are to be combined.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – How to combine them: concat,
try_concat, or merge. Concatenation will allow
preserving the dtype of the underlying data.

	shallow_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments that were used for the
group member selection.

	deep_indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Indexer arguments for deep selection to be
done before combination.

	by_index (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the deep indexing should take place by
index; if False, will use label-based selection.

	**sel_kwargs – Passed on to sel().

	Returns

	
	The selected data of the members from
	cont_names, combined using the given combination method.

	Return type

	Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On conflicting coordinate information on group-level
 and member-level.

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – In concat mode, upon missing members.

	
_select_single(cont_names: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], shallow_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], deep_indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict], by_index: bool [https://docs.python.org/3/library/functions.html#bool], drop: bool [https://docs.python.org/3/library/functions.html#bool], **sel_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Select data from a single group member. Expects the preselected
member map to contain only a single valid container name.

	
_tree_repr(*, level: int [https://docs.python.org/3/library/functions.html#int] = 0, max_level: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, info_fstr='<{:cls_name,info}>', info_ratio: float [https://docs.python.org/3/library/functions.html#float] = 0.6, condense_thresh: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]]] = None, total_item_count: int [https://docs.python.org/3/library/functions.html#int] = 0) → Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Recursively creates a multi-line string tree representation of this
group. This is used by, e.g., the _format_tree method.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int], optional) – The depth within the tree

	max_level (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum depth within the tree;
recursion is not continued beyond this level.

	info_fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string for the info string

	info_ratio (float [https://docs.python.org/3/library/functions.html#float], optional) – The width ratio of the whole line
width that the info string takes

	condense_thresh (Union[int [https://docs.python.org/3/library/functions.html#int], Callable[[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], int [https://docs.python.org/3/library/functions.html#int]]], optional) – If given, this specifies the threshold beyond which the tree
view for the current element becomes condensed by hiding the
output for some elements.
The minimum value for this is 3, indicating that there should
be at most 3 lines be generated from this level (excluding the
lines coming from recursion), i.e.: two elements and one line
for indicating how many values are hidden.
If a smaller value is given, this is silently brought up to 3.
Half of the elements are taken from the beginning of the
item iteration, the other half from the end.
If given as integer, that number is used.
If a callable is given, the callable will be invoked with the
current level, number of elements to be added at this level,
and the current total item count along this recursion branch.
The callable should then return the number of lines to be
shown for the current element.

	total_item_count (int [https://docs.python.org/3/library/functions.html#int], optional) – The total number of items
already created in this recursive tree representation call.
Passed on between recursive calls.

	Returns

	
	The (multi-line) tree representation of
	this group. If this method was invoked with level == 0, a
string will be returned; otherwise, a list of strings will be
returned.

	Return type

	Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
_unlink_child(child: BaseDataContainer)

	Unlink a child from this class.

This method should be called from any method that removes an item from
this group, be it through deletion or through

	
_unlock_hook()

	Invoked upon unlocking.

	
add(*conts, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Add the given containers to this group.

	
property allow_deep_selection: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether deep selection is allowed.

	
property attrs

	The container attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the name of this DataContainer-derived class

	
clear()

	Clears all containers from this group.

This is done by unlinking all children and then overwriting _data
with an empty _STORAGE_CLS object.

	
property coords: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], List[dantro.utils.coords.TCoord]]

	Returns a dict-like container of group-level coordinate values keyed
by dimension.

	
property data

	The stored data.

	
property dims: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The names of the group-level dimensions this group manages.

It _may_ contain dimensions that overlap with dimension names from the
members; this is intentional.

	
get(key, default=None)

	Return the container at key, or default if container with name
key is not available.

	
isel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with an
index-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick indices.
As xarray.DataArray.isel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.isel.html#xarray.DataArray.isel], uses pandas-like
indexing, i.e.: slices do not include the terminal value.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
items()

	Returns an iterator over the (name, data container) tuple of this
group.

	
key_at_idx(idx: int [https://docs.python.org/3/library/functions.html#int]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get a key by its index within the container. Can be negative.

	Parameters

	idx (int [https://docs.python.org/3/library/functions.html#int]) – The index within the member sequence

	Returns

	The desired key

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – Index out of range

	
keys()

	Returns an iterator over the container names in this group.

	
keys_as_int() → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][int [https://docs.python.org/3/library/functions.html#int], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns an iterator over keys as integer values

	
lock()

	Locks the data of this object

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object

	
property member_map: DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Returns an array that represents the space that the members of this
group span, where each value (i.e. a specific coordinate combination)
is the name of the corresponding member of this group.

Upon first call, this is computed here. If members are added, it is
tried to accomodate them in there; if not possible, the cache will be
invalidated.

The member map _may_ include empty strings, i.e. coordinate
combinations that are not covered by any member. Also, they can contain
duplicate names, as one member can cover multiple coordinates.

Note

The member map is invalidated when new members are added that can
not be accomodated in it. It will be recalculated when needed.

	
property member_map_available: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the member map is available yet.

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	The name of this DataContainer-derived object.

	
property ndim: int [https://docs.python.org/3/library/functions.html#int]

	The rank of the space covered by the group-level dimensions.

	
new_container(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, _target_is_group: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → BaseDataContainer

	Creates a new container of type Cls and adds it at the given
path relative to this group.

If needed, intermediate groups are automatically created.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Where to add the container.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The type of the target container
(or group) that is to be added.
If None, will use the type set in _NEW_CONTAINER_CLS class
variable. If a string is given, the type is looked up in the
container type registry.

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls but used for
intermediate group types only.

	_target_is_group (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Internally used variable.
If True, will look up the Cls type via
_determine_group_type() instead of
_determine_container_type().

	**kwargs – passed on to Cls.__init__

	Returns

	The created container of type Cls

	Return type

	BaseDataContainer

	
new_group(path: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]], *, Cls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, GroupCls: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, **kwargs) → BaseDataGroup

	Creates a new group at the given path.

	Parameters

	
	path (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The path to create the group at.
If necessary, intermediate paths will be created.

	Cls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use this type to
create the target group. If not given, uses the class
specified in the _NEW_GROUP_CLS class variable or (if a
string) the one from the group type registry.

Note

This argument is evaluated at each segment of the path
by the corresponding object in the tree. Subsequently, the
types need to be available at the desired

	GroupCls (Union[type [https://docs.python.org/3/library/functions.html#type], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Like Cls, but this
applies only to the creation of intermediate groups.

	**kwargs – Passed on to Cls.__init__

	Returns

	The created group of type Cls

	Return type

	BaseDataGroup

	
property parent

	The associated parent of this container or group

	
property path: str [https://docs.python.org/3/library/stdtypes.html#str]

	The path to get to this container or group from some root path

	
pop(k[, d]) → v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() → (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
recursive_update(other, *, overwrite: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Recursively updates the contents of this data group with the entries
of the given data group

Note

This will create shallow copies of those elements in other
that are added to this object.

	Parameters

	
	other (BaseDataGroup) – The group to update with

	overwrite (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite already existing
object. If False, a conflict will lead to an error being
raised and the update being stopped.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If other was of invalid type

	
sel(indexers: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, *, method: str [https://docs.python.org/3/library/stdtypes.html#str] = None, tolerance: float [https://docs.python.org/3/library/functions.html#float] = None, drop: bool [https://docs.python.org/3/library/functions.html#bool] = False, combination_method: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', deep: bool [https://docs.python.org/3/library/functions.html#bool] = None, **indexers_kwargs) → DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	Return a new labelled xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] with a
coordinate-selected subset of members of this group.

If deep selection is activated, those indexers that are not available
in the group-managed dimensions are looked up in the members of this
group.

Note

For data combination (via any combination_method)
dimensions that differ in size across group members have to be
labelled, such that arrays can be aligned using xarray’s
xarray.align() [https://docs.xarray.dev/en/stable/generated/xarray.align.html#xarray.align] function and the respective coordinates.
See the xarray documentation [https://xarray.pydata.org/en/stable/user-guide/data-structures.html#coordinates]
for more information about coordinates.

	Parameters

	
	indexers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict with keys matching dimensions and
values given by scalars, slices or arrays of tick labels.
As xarray.DataArray.sel() [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.sel.html#xarray.DataArray.sel], uses pandas-like indexing,
i.e.: slices include the terminal value.

	method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Method to use for inexact matches

	tolerance (float [https://docs.python.org/3/library/functions.html#float], optional) – Maximum (absolute) distance between
original and given label for inexact matches.

	drop (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to drop coordinate variables instead
of making them scalar.

	combination_method (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to combine group-level data
with member-level data. Ignored if data from a single group
member is selected, i.e. no data has to be combined. Can be:

	concat: Concatenate. This can preserve the dtype, but
requires that no data is missing.

	merge: Merge, using xarray.merge() [https://docs.xarray.dev/en/stable/generated/xarray.merge.html#xarray.merge]. This
leads to a type conversion to float64, but allows
members being missing or coordinates not fully filling
the available space.

	try_concat: Try concatenation, fall back to merging
if that was unsuccessful.

	auto: Automatically deduce suitably combination
method. Use merge if data is non-integer type and
try_concat otherwise.

Note

Selecting all data (by not passing any indexers)
can be significantly faster using the merge
combination method than using the concat method.

	deep (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to allow deep indexing, i.e.: that
indexers may contain dimensions that don’t refer to group-
level dimensions but to dimensions that are only availble among
the member data. If None, will use the value returned by
the allow_deep_selection property.

	**indexers_kwargs – Additional indexers

	Returns

	
	The selected data, potentially a combination of
	data on group level and member-level data.

	Return type

	DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray]

	
setdefault(key, default=None)

	This method is not supported for a data group

	
property shape: Tuple[int [https://docs.python.org/3/library/functions.html#int]]

	Return the shape of the space covered by the group-level dimensions.

	
property tree: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default (full) tree representation of this group

	
property tree_condensed: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the condensed tree representation of this group. Uses the
_COND_TREE_* prefixed class attributes as parameters.

	
unlock()

	Unlocks the data of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an iterator over the containers in this group.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
__last_keys: Dict[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]]

	

	
__locked

	Whether the data is regarded as locked. Note name-mangling here.

	
__in_direct_insertion_mode

	A name-mangled state flag that determines the state of the object.

	
LDG_EXTRACT_COORDS_FROM = 'data'

	Where to extract coordinates from. Here, coordinates are extracted from
the data directly, inspecting only the group-level dimensions (time).

dantro.mixins package

This sub-package provides mixin classes for easily adding functionality
to a derived contaier or group class

Submodules

dantro.mixins.base module

This sub-module implements the basic mixin classes that are required
in the dantro.base module

	
class AttrsMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This Mixin class supplies the attrs property getter and setter and
the private _attrs attribute.

Hereby, the setter function will initialize a
BaseDataAttrs -derived object and store it as an
attribute. This relays the checking of the correct attribute format to the
actual BaseDataAttrs-derived class.

For changing the class that is used for the attributes, an overwrite of the
_ATTRS_CLS class variable suffices.

	
_attrs = None

	The attribute that data attributes will be stored to

	
_ATTRS_CLS: type [https://docs.python.org/3/library/functions.html#type] = None

	The type of object to use for storing data attributes

	
property attrs

	The container attributes.

	
class SizeOfMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides the __sizeof__ magic method and attempts to take into
account the size of the attributes.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Returns the size of the data (in bytes) stored in this container’s
data and its attributes.

Note that this value is approximate. It is computed by calling the
sys.getsizeof() [https://docs.python.org/3/library/sys.html#sys.getsizeof] function on the data, the attributes, the
name and some caching attributes that each dantro data tree class
contains. Importantly, this is not a recursive algorithm.

Also, derived classes might implement further attributes that are not
taken into account either. To be more precise in a subclass, create a
specific __sizeof__ method and invoke this parent method additionally.

	
class LockDataMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin class provides a flag for marking the data of a group or
container as locked.

	
__locked = False

	Whether the data is regarded as locked. Note name-mangling here.

	
property locked: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether this object is locked

	
lock()

	Locks the data of this object

	
unlock()

	Unlocks the data of this object

	
raise_if_locked(*, prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Raises an exception if this object is locked; does nothing otherwise

	
_lock_hook()

	Invoked upon locking.

	
_unlock_hook()

	Invoked upon unlocking.

	
class BasicComparisonMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides a (very basic) __eq__ method to compare equality.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the _data and
_attrs attributes, i.e. the private attribute. This ensures that
comparison does not trigger any downstream effects like resolution of
proxies.

If types do not match exactly, NotImplemented is returned, thus
referring the comparison to the other side of the ==.

	
class CollectionMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This Mixin class implements the methods needed for being a Collection.

It relays all calls forward to the data attribute.

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__iter__()

	Iterates over the items.

	
class ItemAccessMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This Mixin class implements the methods needed for getting, setting,
and deleting items. It relays all calls forward to the data attribute, but
if given a list (passed down from above), it extracts it.

	
__getitem__(key)

	Returns an item.

	
__setitem__(key, val)

	Sets an item.

	
__delitem__(key)

	Deletes an item

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
class MappingAccessMixin

	Bases: dantro.mixins.base.ItemAccessMixin, dantro.mixins.base.CollectionMixin

Supplies all methods that are needed for Mapping access.

All calls are relayed to the data attribute.

	
keys()

	Returns an iterator over the data’s keys.

	
values()

	Returns an iterator over the data’s values.

	
items()

	Returns an iterator over data’s (key, value) tuples

	
get(key, default=None)

	Return the value at key, or default if key is not
available.

	
__contains__(key) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the given key is contained in the items.

	
__delitem__(key)

	Deletes an item

	
__getitem__(key)

	Returns an item.

	
__iter__()

	Iterates over the items.

	
__len__() → int [https://docs.python.org/3/library/functions.html#int]

	The number of items.

	
__setitem__(key, val)

	Sets an item.

	
_item_access_convert_list_key(key)

	If given something that is not a list, just return that key

	
class CheckDataMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin class extends a BaseDataContainer-derived class to check the
provided data before storing it in the container.

It implements a general _check_data() method, overwriting the
placeholder method in the BaseDataContainer, and
can be controlled via class variables.

Note

This is not suitable for checking containers that are added to an
object of a BaseDataGroup-derived class!

	
DATA_EXPECTED_TYPES: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = None

	Which types to allow. If None, all types are allowed.

	
DATA_ALLOW_PROXY: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to allow all proxy types, i.e. classes derived from
AbstractDataProxy.

	
DATA_UNEXPECTED_ACTION = 'warn'

	The action to take when an unexpected type was supplied.
Can be: raise, warn, ignore.

	
_check_data(data) → None [https://docs.python.org/3/library/constants.html#None]

	A general method to check the received data for its type

	Parameters

	data – The data to check

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the type was unexpected and the action was ‘raise’

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Illegal value for DATA_UNEXPECTED_ACTION class
 variable

	Returns

	None

	
class DirectInsertionModeMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A mixin class that provides a context manager, within which insertion
into the mixed-in class (think: group or container) can happen more
directly. This is useful in cases where more assumptions can be made about
the to-be-inserted data, thus allowing to make fewer checks during
insertion (think: duplicates, key order, etc.).

Note

This direct insertion mode is not (yet) part of the public interface,
as it has to be evaluated how robust and error-prone it is.

	
__in_direct_insertion_mode = False

	A name-mangled state flag that determines the state of the object.

	
property with_direct_insertion: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the class this mixin is mixed into is currently in direct
insertion mode.

	
_direct_insertion_mode(*, enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	A context manager that brings the class this mixin is used in into
direct insertion mode. While in that mode, the
with_direct_insertion() property will return true.

This context manager additionally invokes two callback functions, which
can be specialized to perform certain operations when entering or
exiting direct insertion mode: Before entering,
_enter_direct_insertion_mode() is called. After exiting,
_exit_direct_insertion_mode() is called.

	Parameters

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to actually use direct insertion
mode. If False, will yield directly without setting the toggle.
This is equivalent to a null-context.

	
_enter_direct_insertion_mode()

	Called after entering direct insertion mode; can be overwritten to
attach additional behaviour.

	
_exit_direct_insertion_mode()

	Called before exiting direct insertion mode; can be overwritten to
attach additional behaviour.

dantro.mixins.general module

This module implements general mixin classes for containers and groups

	
class ForwardAttrsMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This Mixin class forwards all calls to unavailable attributes to a
certain other attribute, specified by FORWARD_ATTR_TO class variable.

By including naive __getstate__ and __setstate__ methods, classes
that include this mixin remain pickleable.

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
class ForwardAttrsToDataMixin

	Bases: dantro.mixins.general.ForwardAttrsMixin

This mixin class forwards all calls to unavailable attributes to the
data attribute (a property) and thus allows to replace most behaviour
that is not implemented in the group or container with that of the
underlying data.

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'data'

	The name of the existing attribute to forward to. For None, this behaves
as if no forwarding would occur, i.e. as if __getattr__ was not called.

dantro.mixins.indexing module

This module implement mixin classes that provide indexing capabilities

	
class IntegerItemAccessMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin allows accessing items via integer keys and also supports
calling the __contains__ magic method with integer keys. It is meant to
be used to add features to an AbstractDataGroup-derived class, although
this is not enforced.

Note

The __setitem__ method is not covered by this!

Note

The class using this mixin has to implement index access methods and
the __contains__ magic method independently from this mixin!

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Makes sure a key is a string

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
class PaddedIntegerItemAccessMixin

	Bases: dantro.mixins.indexing.IntegerItemAccessMixin

This mixin allows accessing items via integer keys that map to members
that have a zero-padded integer name. It can only be used as mixin for
AbstractDataGroup-derived classes!

The __contains__ magic method is also supported in this mixin.

Note

The class using this mixin has to implement index access methods and
the __contains__ magic method independently from this mixin!

	
_PADDED_INT_KEY_WIDTH: int [https://docs.python.org/3/library/functions.html#int] = None

	The number of digits of the padded string representing the integer

	
_PADDED_INT_FSTR: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	The format string to generate a padded integer; deduced upon first call

	
_PADDED_INT_STRICT_CHECKING: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether to use strict checking when parsing keys, i.e. check that the
range of keys is valid and an error is thrown when an integer key was
given that cannot be represented consistently by a padded string of the
determined key width.

	
_PADDED_INT_MAX_VAL: int [https://docs.python.org/3/library/functions.html#int] = None

	The allowed maximum value of an integer key; checked only in strict mode

	
__contains__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Adjusts the parent method to allow checking for integers

	
__delitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item deletion by integer key

	
__getitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow integer key item access

	
__setitem__(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]])

	Adjusts the parent method to allow item setting by integer key

	
property padded_int_key_width: Optional[int [https://docs.python.org/3/library/functions.html#int]]

	Returns the width of the zero-padded integer key or None, if it is
not already specified.

	
_parse_key(key: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Parse a potentially integer key to a zero-padded string

	
_check_cont(cont: AbstractDataContainer) → None [https://docs.python.org/3/library/constants.html#None]

	This method is invoked when adding a member to a group and makes
sure the name of the added group is correctly zero-padded.

Also, upon first call, communicates the zero padded integer key width,
i.e.: the length of the container name, to the
PaddedIntegerItemAccessMixin.

	Parameters

	cont – The member container to add

	Returns
	None: No return value needed

dantro.mixins.numeric module

This module implements mixin classes which provide numeric interfaces for
containers

	
class UnaryOperationsMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin class implements the methods needed for unary operations.

It leaves out those that expect that return values are of a certain type,
e.g. __complex__, __int__, …

	
__neg__()

	Make negative

	Returns

	A new object with negative elements

	
__pos__()

	Make positive

	Returns

	A new object with negative elements

	
__abs__()

	Absolute value

	Returns

	A new object with the absolute value of the elements

	
__invert__()

	Inverse value

	Returns

	A new object with the inverted values of the elements

	
__round__()

	Rounds number to nearest integer

	Returns

	A new object as rounded number to nearest integer

	
__ceil__()

	Smallest integer

	Returns

	A new object containing the smallest integer

	
__floor__()

	Largest integer

	Returns

	A new object containing the largest element

	
__trunc__()

	Truncated to the nearest integer toward 0

	Returns

	A new object containing the truncated element

	
class NumbersMixin

	Bases: dantro.mixins.numeric.UnaryOperationsMixin

This mixin implements the methods needed for calculating with numbers.

	
__add__(other)

	Add two objects

	Returns

	A new object containing the summed data

	
__sub__(other)

	Subtract two objects

	Returns

	A new object containing the subtracted data

	
__mul__(other)

	Multiply two objects

	Returns

	A object containing the multiplied data

	
__truediv__(other)

	Divide two objects

	Returns

	A new object containing the divided data

	
__floordiv__(other)

	Floor divide two objects

	Returns

	A new object containing the floor divided data

	
__mod__(other)

	Calculate the modulo of two objects

	Returns

	A new object containing the summed data

	
__divmod__(other)

	Calculate the floor division and modulo of two objects

	Returns

	A new object containing the floor divided data and its modulo

	
__pow__(other)

	Calculate the self data to the power of other data

	Returns

	A new object containing the result

	
__iadd__(other)

	Add two objects

	Returns

	Self with modified data

	
__isub__(other)

	Subtract two objects

	Returns

	Self with modified data

	
__imul__(other)

	Multiply two objects

	Returns

	Self with modified data

	
__itruediv__(other)

	Divide two objects

	Returns

	Self with modified data

	
__ifloordiv__(other)

	Floor divide two objects

	Returns

	Self with modified data

	
__imod__(other)

	Calculate the modulo of two objects

	Returns

	Self with modified data

	
__ipow__(other)

	Calculate the self data to the power of other data

	Returns

	Self with modified data

	
__abs__()

	Absolute value

	Returns

	A new object with the absolute value of the elements

	
__ceil__()

	Smallest integer

	Returns

	A new object containing the smallest integer

	
__floor__()

	Largest integer

	Returns

	A new object containing the largest element

	
__invert__()

	Inverse value

	Returns

	A new object with the inverted values of the elements

	
__neg__()

	Make negative

	Returns

	A new object with negative elements

	
__pos__()

	Make positive

	Returns

	A new object with negative elements

	
__round__()

	Rounds number to nearest integer

	Returns

	A new object as rounded number to nearest integer

	
__trunc__()

	Truncated to the nearest integer toward 0

	Returns

	A new object containing the truncated element

	
class ComparisonMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This Mixin implements functions to compare objects

	
__eq__(other)

	Equality

	
__ne__(other)

	Inequality

	
__lt__(other)

	Less than

	
__le__(other)

	Less than or equal

	
__gt__(other)

	Greater than

	
__ge__(other)

	Greater than or equal

	
__bool__()

	Truth value

	
get_data(obj)

	Get the data of obj depending on whether it is part of dantro or
not.

	Parameters

	obj – The object to check

	Returns

	
	Either the .data attribute of a dantro-based object or otherwise
	the object itself.

	
apply_func_to_copy(obj, func, other=None)

	Apply a given function to a copy for all datatypes

	Returns

	An object with the data on which the function was applied

	
apply_func_inplace(obj, func, other=None)

	Apply a given function inplace for all data types.

	Returns

	An object with the data on which the function was applied

dantro.mixins.proxy_support module

This module implements mixins that provide proxy support

	
class ProxySupportMixin

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This mixin class overwrites the data property to allow and resolve
proxy objects.

It should be used to add support for certain proxy types to a container.

A proxy object is a place holder for data that is not yet loaded. It will
only be loaded if the data property is directly or indirectly accessed.

	
DATA_ALLOW_PROXY = True

	

	
PROXY_RESOLVE_ASTYPE = None

	Which type to resolve the proxy to

	
PROXY_RETAIN = False

	Whether to retain the proxy object after resolving

	
PROXY_REINSTATE_FAIL_ACTION = 'raise'

	Behaviour upon failure of reinstating a proxy.

Can be: raise, warn, log_warning, log_debug

	
PROXY_REINSTATE_FOR_PICKLING = True

	If true, populates the pickling state with the proxy instead of the data

	
_retained_proxy = None

	

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	If the data is no longer a proxy, but a proxy was retained, this
overload adjusts the pickling state such that the proxy object is
returned instead of the data that was resolved from it. This hels to
reduce the file size of the pickle.

	
property data

	The container data. If the data is a proxy, this call will lead
to the resolution of the proxy.

	Returns

	The data stored in this container

	
property data_is_proxy: bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true, if this is proxy data

	Returns

	Whether the currently stored data is a proxy object

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property proxy: Optional[AbstractDataProxy]

	If the data is proxy, returns the proxy data object without using
the .data attribute (which would trigger resolving the proxy); else
returns None.

	Returns

	
	If the data is proxy, return the
	proxy object; else None.

	Return type

	Union[AbstractDataProxy, None]

	
reinstate_proxy()

	Re-instate a previously retained proxy object, discarding _data.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an indicator to whether data is proxy to the info string.
Additionally, the proxy tags are appended.

	
class Hdf5ProxySupportMixin

	Bases: dantro.mixins.proxy_support.ProxySupportMixin

Specializes the
ProxySupportMixin to the
capabilities of Hdf5DataProxy, i.e. it
allows access to the cached properties of the proxy object without
resolving it.

	
property dtype: dtype [https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype]

	Returns dtype, proxy-aware

	
DATA_ALLOW_PROXY = True

	

	
PROXY_REINSTATE_FAIL_ACTION = 'raise'

	Behaviour upon failure of reinstating a proxy.

Can be: raise, warn, log_warning, log_debug

	
PROXY_REINSTATE_FOR_PICKLING = True

	If true, populates the pickling state with the proxy instead of the data

	
PROXY_RESOLVE_ASTYPE = None

	Which type to resolve the proxy to

	
PROXY_RETAIN = False

	Whether to retain the proxy object after resolving

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	If the data is no longer a proxy, but a proxy was retained, this
overload adjusts the pickling state such that the proxy object is
returned instead of the data that was resolved from it. This hels to
reduce the file size of the pickle.

	
_format_info() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Adds an indicator to whether data is proxy to the info string.
Additionally, the proxy tags are appended.

	
_retained_proxy = None

	

	
property data

	The container data. If the data is a proxy, this call will lead
to the resolution of the proxy.

	Returns

	The data stored in this container

	
property data_is_proxy: bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true, if this is proxy data

	Returns

	Whether the currently stored data is a proxy object

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property proxy: Optional[AbstractDataProxy]

	If the data is proxy, returns the proxy data object without using
the .data attribute (which would trigger resolving the proxy); else
returns None.

	Returns

	
	If the data is proxy, return the
	proxy object; else None.

	Return type

	Union[AbstractDataProxy, None]

	
reinstate_proxy()

	Re-instate a previously retained proxy object, discarding _data.

	
property shape: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns shape, proxy-aware

	
property ndim: int [https://docs.python.org/3/library/functions.html#int]

	Returns ndim, proxy-aware

	
property size: int [https://docs.python.org/3/library/functions.html#int]

	Returns size, proxy-aware

	
property chunks: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	Returns chunks, proxy-aware

dantro.plot package

The plotting module consolidates the dantro plotting framework

isort:skip_file

Subpackages

	dantro.plot.creators package
	Submodules

	dantro.plot.creators.base module

	dantro.plot.creators.psp module

	dantro.plot.creators.pyplot module

	dantro.plot.funcs package
	Submodules

	dantro.plot.funcs._multiplot module

	dantro.plot.funcs._utils module

	dantro.plot.funcs.basic module

	dantro.plot.funcs.generic module

	dantro.plot.funcs.graph module

	dantro.plot.funcs.multiplot module

	dantro.plot.utils package
	Submodules

	dantro.plot.utils._file_writer module

	dantro.plot.utils.color_mngr module

	dantro.plot.utils.mpl module

	dantro.plot.utils.plot_func module

Submodules

dantro.plot._cfg module

A module containing tools for generating plot configurations

	
INHERIT_BASED_ON_SAME_KEY: Tuple[Any, ...] = ('inherit', True, False)

	When resolving plots configurations, entries of the form

my_plot: <scalar>

and <scalar> being one of those literals specified here, will be
translated into:

my_plot:
 based_on: my_plot

	
_check_visited(visited: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]], *, next_visit: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) → Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Performs cycle detection on the sequence of visited entries and raises
an error if there will be a cycle. Otherwise, returns the new visiting
sequence by appending the next_visit to the given sequence of
visited entries.

	
_find_in_pool(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, base_pools: OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict], skip: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]] = ()) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]

	Looks up a plot configuration in the given pool and returns the name
of the pool, the found configuration, and the subset of pools that were not
yet looked up.

With skip, certain entries can be skipped, e.g. the entry from which
the current based_on is resolved from.

	
resolve_plot_cfgs_shortcuts(cfg: Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], str [https://docs.python.org/3/library/stdtypes.html#str], bool [https://docs.python.org/3/library/functions.html#bool]], *, key: str [https://docs.python.org/3/library/stdtypes.html#str]) → Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Given a single plot configuration that is referenced as key in the
parent scope, checks if the plot config is not dict-like, in which case
it is interpreted as a ‘shortcut’ for a plot configuration that is based
on a plot of the same key.

In other words, a plot configuration like

my_plot: inherit

is translated to

my_plot:
 based_on: my_plot
 enabled: true # == bool('inherit')

Valid plot configuration shortcuts are defined in
INHERIT_BASED_ON_SAME_KEY.

	
_resolve_based_on(pcfg: Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]], *, base_pools: OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict], _visited: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) → Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Assembles a single plot’s configuration by recursively resolving its
based_on entry from a pool of available base plot configurations.

This function always works on a deep copy of pcfg and will remove any
potentially existing based_on entry on the root level of pcfg.

Furthermore, it accepts ParamSpace objects for plot configuration
entries, recursively updating their dict representation and again creating
a ParamSpace object from them afterwards.

	
resolve_based_on(plots_cfg: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]], *, label: str [https://docs.python.org/3/library/stdtypes.html#str], base_pools: Union [https://docs.python.org/3/library/typing.html#typing.Union][OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Resolves the based_on entries of all plot configurations in the
given plot configurations dictionary plots_cfg.

The procedure is as follows:

	Iterate over root-level entries in the plots_cfg dict

	For each entry, check if a based_on entry is present and needs
to be resolved.

	If so, recursively resolve the configuration entry, starting from the
first entry in the based_on sequence and recursively updating it
with content of the following elements. The final recursive update
is that of the plot configuration given in plots_cfg.

Lookups happen from a pool of plot configurations: the base_pools,
combined with the given plots_cfg itself. The based_on entries are
looked up by name using the following rules:

	Other plot configurations within plots_cfg have highest
precedence.

	If no name is found there, lookups happen from within base_pools,
iterating over it in reverse, meaning that entries later in the
ordered dict take precedence over those earlier.

	If entries in a base pool are again using based_on, these will be
looked up using the same rules, but with the pool restricted to
entries with lower precedence than that pool.

	Lookups within the same pool will exclude the name of the currently
updated plot configuration.
Example: some_plot: {based_on: some_plot} will look for
some_plot in some lower-precedence pool.

The resolution of plot configurations works on deep copies of the given
plots_cfg and all the based_on entries to avoid mutability issues
between parts of these highly nested dictionaries.

For integrated use of this functionality, see Plot Configuration Inheritance.

	Parameters

	
	plots_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict with multiple plot configurations to resolve
the based_on entries of. Root-level keys are assumed to
correspond to individual plot configurations.
If this argument evaluates to False, will silently assume an empty
plots configuration.

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label to use for the given plots configuration when
adding it to the base configuration pool.

	base_pools (Union[OrderedDict, Sequence[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]]]) – The base
configuration pools to look up the based_on entries in. This
needs to be an OrderedDict or a type that can be converted into
one. Keys will be used as labels for the individual pools.
The order of this pool is relevant, see above.

	Raises

	PlotConfigError – Upon missing based_on values or dependency loops.

	
resolve_based_on_single(*, name: str [https://docs.python.org/3/library/stdtypes.html#str], based_on: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]], plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], **resolve_based_on_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Wrapper for resolve_based_on() for cases of
single independent plot configurations.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the single plot

	based_on (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The extracted based_on
argument.

	plot_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The rest of the single plot’s configuration. This
may not include based_on! If this argument evaluates to False,
will silently assume an empty plots configuration.

	**resolve_based_on_kwargs – Passed on

dantro.plot.plot_helper module

This module implements the dantro PlotHelper class, which aims to abstract
matplotlib plot operations such that they can be made accessible for a
configuration-based declaration.

	
class temporarily_changed_axis(hlpr: PlotHelper, tmp_ax_coords: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context manager to temporarily change an axis in the
PlotHelper.

	
__init__(hlpr: PlotHelper, tmp_ax_coords: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]] = None)

	Initialize the context manager.

	Parameters

	
	hlpr (PlotHelper) – The plot helper of which to select a temporary
axis

	tmp_ax_coords (Tuple[int [https://docs.python.org/3/library/functions.html#int]], optional) – The coordinates of the
temporary axis. If not given, will not change the axis.

	
__enter__()

	Enter the context, selecting a temporary axis

	
__exit__(*args)

	Change back to the initial axis. Errors are not handled.

	
_coords_match(coords: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]], *, match: Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], full_shape: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether a coordinate is matched by a coordinate match tuple.

Allowed values in the coordinate match tuple are:

	
	integers: regarded as coordinates. If negative or exceeding the full
	shape, these are wrapped around.

	Ellipsis: matches all coordinates

	None: alias for Ellipsis

	Parameters

	
	coords (Tuple[int [https://docs.python.org/3/library/functions.html#int]]) – The coordinate to match

	match (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]) – The match tuple, where None is
interpreted as an Ellipsis and negative values are wrapped around
by full_shape. Can also be ‘all’, which is equivalent to a
(None, None) tuple. Can also be a list, which is then converted to
a tuple.

	full_shape (Tuple[int [https://docs.python.org/3/library/functions.html#int]]) – The full shape of the axes; needed to wrap
around negative values in match.

	Returns

	Whether coords matches match

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – match not being a tuple or a list

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Any of the arguments not being 2-tuples.

	
class PlotHelper(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], helper_defaults: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, update_helper_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, raise_on_error: bool [https://docs.python.org/3/library/functions.html#bool] = True, animation_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The PlotHelper takes care of the figure setup and saving and allows
accessing matplotlib utilities through the plot configuration.

	
_SPECIAL_CFG_KEYS: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('setup_figure', 'save_figure')

	Configuration keys with special meaning

	
_FIGURE_HELPERS: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('align_labels', 'set_suptitle', 'set_figlegend', 'subplots_adjust', 'figcall')

	Names of those helpers that are applied on the figure level

	
__init__(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], helper_defaults: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, update_helper_cfg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, raise_on_error: bool [https://docs.python.org/3/library/functions.html#bool] = True, animation_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Initialize a PlotHelper with a certain configuration.

This configuration is the so-called “base” configuration and is not
axis-specific. There is the possibility to specify axis-specific
configuration entries.

All entries in the helper configuration are deemed ‘enabled’ unless
they explicitly specify enabled: false in their configuration.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to store the created figure. This may be an
absolute path or a relative path; the latter is regarded as
relative to the current working directory. The home directory
indicator ~ is expanded.

	helper_defaults (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The basic configuration of the
helpers.

	update_helper_cfg (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A configuration used to update
the existing helper defaults

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise on an exception
created on helper invocation or just log the error

	animation_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether animation mode is
enabled.

	
property _axis_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Return the configuration for the current axis; not a deep copy!

	
property axis_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a deepcopy of the current axis’ configuration.

	
property base_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a deepcopy of the base configuration, i.e. the configuration
that is not axis-specific.

	
property fig: Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]

	Returns the current figure

	
property ax: Axis [https://matplotlib.org/stable/api/axis_api.html#matplotlib.axis.Axis]

	Returns the current axis of the associated figure

	
property ax_coords: Tuple[int [https://docs.python.org/3/library/functions.html#int]]

	Returns the current axis coordinates within a subfigure in shape
(col, row).

For example, the (0, 0) coordinate refers to the top left subplot
of the figure. (1, 2) is the axis object in the second column,
third row.

	
property axes: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Returns the axes array, which is of shape (#cols, #rows).

The (0, 0) axis refers to the top left subplot of the figure.

	
property available_helpers: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	List of available helper names

	
property enabled_helpers: list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns a list of enabled helpers for the current axis

	
property enabled_figure_helpers: list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns a list of enabled figure-level helpers

	
property out_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the output path of the plot

	
property animation_enabled: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether animation mode is currently enabled or not

	
property animation_update: Callable

	Returns the animation update generator callable

	
property invoke_before_grab: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the helpers are to be invoked before grabbing each frame of
an animation.

	
property raise_on_error: bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the PlotHelper was configured to raise exceptions

	
property axis_handles_labels: Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Returns the tracked axis handles and labels for the current axis

	
property all_handles_labels: Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Returns all associated handles and labels

	
property axis_is_empty: bool [https://docs.python.org/3/library/functions.html#bool]

	Returns true if the current axis is empty, i.e. has no artists added
to it: Basically, negation of matplotlib.axes.Axes.has_data() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.has_data.html#matplotlib.axes.Axes.has_data].

	
attach_figure_and_axes(*, fig, axes, skip_if_identical: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Attaches the given figure and axes to the PlotHelper. This method
replaces an existing figure and existing axes with the ones given.

As the PlotHelper relies on axes being accessible via coordinate pairs,
multiple axes must be passed as two-dimensional array-like. Since the
axes are internally stored as numpy array, the axes-grid must be
complete.

Note that by closing the old figure the existing axis-specific config
and all existing axes are destroyed. In other words: All information
previously provided via the provide_defaults and the mark_* methods
is lost. Therefore, if needed, it is recommended to call this method at
the beginning of the plotting function.

Note

This function assumes multiple axes to be passed in (y,x) format
(as e.g. returned by matplotlib.pyplot.subplots with squeeze set to
False) and internally transposes the axes-grid such that afterwards
it is accessible via (x,y) coordinates.

	Parameters

	
	fig – The new figure which replaces the existing.

	axes – single axis or 2d array-like containing the axes

	skip_if_identical (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will check if the
given fig is identical to the already associated figure;
if so, will do nothing. This can be useful if one cannot be
sure if the figure was already associated. In such a case, note
that the axes argument is completely ignored.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On multiple axes not being passed in 2d format.

	Returns

	None

	
setup_figure(**update_fig_kwargs)

	Sets up a matplotlib figure instance and axes with the given
configuration (by calling matplotlib.pyplot.subplots() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots]) and
attaches both to the PlotHelper.

If the scale_figsize_with_subplots_shape option is enabled here,
this method will also take care of scaling the figure accordingly.

	Parameters

	**update_fig_kwargs – Parameters that are used to update the
figure setup parameters stored in setup_figure.

	
save_figure(*, close: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Saves and (optionally, but default) closes the current figure

	Parameters

	close (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to close the figure after saving.

	
close_figure()

	Closes the figure and disassociates it from the helper. This method
has no effect if no figure is currently associated.

This also removes the axes objects and deletes the axis-specific
configuration. All information provided via provide_defaults and the
mark_* methods is lost.

	
select_axis(col: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, row: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, *, ax=None)

	Sets the current axis.

Setting the axis can happen in three ways, depending on the arguments:

	The axis object at the given col and row coordinates.

	An explicitly given axis object (if ax is given)

	The current axis (if all arguments are None)

This method can be used to change to a different associated axis to
continue plotting on that axis.

Calling this method may also become necessary if the current axis is
changed in a part of the program where the plot helper is not
involved; in such a case, the currently selected axis may have been
changed directly via the matplotlib interface.
This method can then be used to synchronize the two again.

Note

The col and row values are wrapped around according to the
shape of the associated axes array, thereby allowing to specify
them as negative values for indexing from the back.

	Parameters

	
	col (int [https://docs.python.org/3/library/functions.html#int], optional) – The column to select, i.e. the x-coordinate.
Can be negative, in which case it indexes backwards from the
last column.

	row (int [https://docs.python.org/3/library/functions.html#int], optional) – The row to select, i.e. the y-coordinate. Can
be negative, in which case it indexes backwards from the last
row.

	ax (optional) – If given this axis object, tries to look it up from
the associated axes array.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On failing to set the current axis or if the given axis
 object or the result of matplotlib.pyplot.gca() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca] was
 not part of the associated axes array.
 To associate the correct figure and axes, use the
 attach_figure_and_axes() method.

	
coords_iter(*, match: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]], None [https://docs.python.org/3/library/constants.html#None], None [https://docs.python.org/3/library/constants.html#None]]

	Returns a generator to iterate over all coordinates that match
match.

	Parameters

	match (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]) – The coordinates to match; those that do
not match this pattern (evaluated by _coords_match())
will not be yielded. If not given, will iterate only over the
currently selected axis.

	Yields

	Generator[Tuple[int], None, None] – The axis coordinates generator

	
_invoke_helper(helper_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mark_disabled_after_use: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_on_error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **update_kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Invokes a single helper on the specified axes, if it is enabled, and
marks it disabled afterwards. The given update parameters are used to
update the existing configuration.

Unlike the public invoke_helper method, this method checks for whether
the helper is enabled, while the public method automatically assumes
it is meant to be enabled.

	Parameters

	
	helper_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – helper which is invoked

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	mark_disabled_after_use (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the helper is
marked as disabled after invoking it

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, overwrites the default
controlled via the raise_on_error attribute.

	**update_kwargs – Update parameters for this specific plot helper.
Note that these do not persist, but are only used for this
invocation.

	Raises

	
	PlotHelperErrors – On failing plot helper invocations

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – No matching helper function defined

	
invoke_helper(helper_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mark_disabled_after_use: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_on_error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **update_kwargs)

	Invokes a single helper on the specified axes.

	Parameters

	
	helper_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the helper to invoke

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	mark_disabled_after_use (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the helper is
marked as disabled after the invocation.

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, overwrites the default
controlled via the raise_on_error attribute.

	**update_kwargs – Update parameters for this specific plot helper.
Note that these do not persist, but are only used for this
invocation.

	Raises

	PlotHelperErrors – On failing plot helper invocation

	
invoke_helpers(*helper_names, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mark_disabled_after_use: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_on_error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **update_helpers)

	Invoke all specified helpers on the specified axes.

	Parameters

	
	*helper_names – The helper names to invoke

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	mark_disabled_after_use (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to mark helpers
disabled after they were used.

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, overwrites the default
controlled via the raise_on_error attribute.

	**update_helpers – Update parameters for all plot helpers.
These have to be grouped under the name of the helper in order
to be correctly associated. Note that these do not persist,
but are only used for this invocation.

	Raises

	PlotHelperErrors – On failing plot helper invocations

	
invoke_enabled(*, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mark_disabled_after_use: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_on_error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **update_helpers)

	Invokes all enabled helpers with their current configuration on the
matching axes and all enabled figure-level helpers on the figure.

Internally, this first invokes all figure-level helpers and then calls
invoke_helpers()
with all enabled helpers for all axes matching the axes argument.

Note

When setting mark_disabled_after_use = False, this will lead to
figure-level helpers being invoked multiple times. As some of these
helpers do not allow multiple invocation, invoking this method a
second time might fail if not disabling them as part of the first
call to this method.

	Parameters

	
	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	mark_disabled_after_use (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the helper is
marked as disabled after the invocation.

	raise_on_error (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, overwrites the default
controlled via the raise_on_error attribute.

	**update_helpers – Update parameters for all plot helpers.
These have to be grouped under the name of the helper in order
to be correctly associated. Note that these do not persist,
but are only used for this invocation.

	Raises

	PlotHelperErrors – On failing plot helper invocations

	
provide_defaults(helper_name: str [https://docs.python.org/3/library/stdtypes.html#str], *, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, mark_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, **update_kwargs)

	Update or add a single entry to a helper’s configuration.

	Parameters

	
	helper_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the helper whose config is to change

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	mark_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to mark the helper enabled
by providing defaults

	**update_kwargs – dict containing the helper parameters with
which the config is updated recursively

	
mark_enabled(*helper_names, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Marks the specified helpers as enabled for the specified axes.

	Parameters

	
	*helper_names – Helpers to be enabled

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	
mark_disabled(*helper_names, axes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Marks the specified helpers as disabled for the specified axes.

	Parameters

	
	*helper_names – Helpers to be disabled

	axes (Union[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A coordinate match tuple of
the axes to invoke this helper on. If not given, will invoke
only on the current axes.

	
track_handles_labels(handles: list [https://docs.python.org/3/library/stdtypes.html#list], labels)

	Keep track of legend handles and/or labels for the current axis.

	Parameters

	
	handles (list [https://docs.python.org/3/library/stdtypes.html#list]) – The handles to keep track of

	labels (list [https://docs.python.org/3/library/stdtypes.html#list]) – The associated labels

	
register_animation_update(update_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], *, invoke_helpers_before_grab: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Registers a generator used for animations.

	Parameters

	
	update_func (Callable) – Generator object over which is iterated
over to create an animation. This needs

	invoke_helpers_before_grab (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to invoke all
enabled plot helpers before grabbing a frame. This should be
set to True if the animation update function overwrites the
effects of the previously applied helpers.

	
enable_animation()

	Can be invoked to enter animation mode. An action is only performed
if the helper is not currently in animation mode.

	Raises

	EnterAnimationMode – Conveys to the plot creator that animation
 mode is to be entered.

	
disable_animation()

	Can be invoked to exit animation mode. An action is only performed
if the helper is currently in animation mode.

	Raises

	ExitAnimationMode – Conveys to the plot creator that animation mode
 should be left.

	
_compile_axis_specific_cfg() → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	With a figure set up, compiles the axis-specific helper config.

	
_raise_on_invalid_helper_name(*helper_names: str [https://docs.python.org/3/library/stdtypes.html#str], special_cfg_keys_allowed: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Makes sure the given helper names are valid.

	Parameters

	
	*helper_names (str [https://docs.python.org/3/library/stdtypes.html#str]) – Names of the helpers to check

	special_cfg_keys_allowed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to regard the
special configuration keys as valid or not.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid helper name

	
_handle_errors(*errors, raise_on_error: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Helper method to handle errors

	
_find_axis_coords(ax) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]

	Find the coordinates of the given axis object in the axes array

	
_hlpr_align_labels(*, x: bool [https://docs.python.org/3/library/functions.html#bool] = True, y: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Aligns axis labels in the whole figure by calling
matplotlib.figure.Figure.align_xlabels() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.align_xlabels] and/or
matplotlib.figure.Figure.align_ylabels() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.align_ylabels].

	
_hlpr_set_suptitle(*, title: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, margin: float [https://docs.python.org/3/library/functions.html#float] = 0.025, **title_kwargs)

	Set the figure title using
matplotlib.figure.Figure.suptitle() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.suptitle].

This figure-level helper automatically vertically adjusts the subplot
sizes to fit the suptitle into the figure without overlapping. This is
not done if the title string is empty or if the y-position is
specified via the y argument. When repetitively invoking this
helper on the same figure, the subplot sizes are re-adjusted each time.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The title to be set

	margin (float [https://docs.python.org/3/library/functions.html#float], optional) – An additional vertical margin between
the figure and the suptitle.

	**title_kwargs – Passed on to fig.suptitle

	
_hlpr_set_figlegend(*, gather_from_fig: bool [https://docs.python.org/3/library/functions.html#bool] = False, custom_labels: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = (), hiding_threshold: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, loc='center right', margin: float [https://docs.python.org/3/library/functions.html#float] = 0.015, **legend_kwargs)

	Sets a figure legend.

As a source of handles and labels, uses all those tracked via
track_handles_labels().
Furthermore, gather_from_fig controls whether to additionally
retrieve already existing handles and labels from any legend used
within the figure, e.g. on all of the axes.

For legend locations on the right side of the figure, this will
additionally adjust the subplot shape to accomodate for the figure
legend without overlapping. This is not done for other loc values.

If no handles could be retrieved by the above procedure, no figure
legend will be added.

	Parameters

	
	gather_from_fig (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to extract figure handles
and labels from already existing legends used in the figure.

	custom_labels (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Custom labels to assign
for the given handles.

	hiding_threshold (int [https://docs.python.org/3/library/functions.html#int], optional) – If there are more handles or
labels available than the threshold, no figure legend will be
added.

	loc (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The location of the figure legend. Note that
figure adjustments are done for a figure legend on the right
side of the figure; these are not done if the figure is located
somewhere else, which might lead to it overlapping with other
axes.

	margin (float [https://docs.python.org/3/library/functions.html#float], optional) – An additional horizontal margin between
the figure legend and the axes.

	**legend_kwargs – Passed on to
matplotlib.figure.Figure.legend() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.legend].

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If a figure legend was already set via the helper.

	
_hlpr_subplots_adjust(**kwargs)

	Invokes matplotlib.figure.Figure.subplots_adjust() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.subplots_adjust] on the
whole figure.

	
_hlpr_figcall(*, functions: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]], **shared_kwargs)

	Figure-level helper that can be used to call multiple functions.
This helper is invoked before the axis-level helper.

See _hlpr_call() for more information and examples.

	Parameters

	
	functions (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A sequence of function call
specifications. Each dict needs to contain at least the key
function which determines which function to invoke. Further
arguments are parsed into the positional and keyword arguments
of the to-be-invoked function.

	**shared_kwargs – Passed on as keyword arguments to all function
calls in functions.

	
_hlpr_autofmt_xdate(**kwargs)

	Invokes autofmt_xdate() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.autofmt_xdate] on the
figure, passing all arguments along. This can be useful when x-labels
are overlapping (e.g. because they are dates).

	
_hlpr_set_title(*, title: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **title_kwargs)

	Sets the title of the current axes.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The title to be set

	**title_kwargs – Passed on to
matplotlib.axes.Axes.set_title() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_title.html#matplotlib.axes.Axes.set_title]

	
_hlpr_set_labels(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, only_label_outer: bool [https://docs.python.org/3/library/functions.html#bool] = False, rotate_z_label: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Sets the x, y, and z label of the current axis.

	Parameters

	
	x (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Either the label as a string or
a dict with key label, where all further keys are passed on
to matplotlib.axes.Axes.set_xlabel() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlabel.html#matplotlib.axes.Axes.set_xlabel]

	y (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Either the label as a string or
a dict with key label, where all further keys are passed on
to matplotlib.axes.Axes.set_ylabel() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylabel.html#matplotlib.axes.Axes.set_ylabel]

	z (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Either the label as a string or
a dict with key label, where all further keys are passed on
to mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlabel() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlabel.html#mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlabel].
If there is no z-axis, this will be silently ignored.

	only_label_outer (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, call
matplotlib.axes.Axes.label_outer() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.label_outer.html#matplotlib.axes.Axes.label_outer] such that
only tick labels on “outer” axes are visible:
x-labels are only kept for subplots on the last row; y-labels
only for subplots on the first column. Note that this applies
to both axes and may lead to existing axes being hidden.

	rotate_z_label (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If given, sets
mpl_toolkits.mplot3d.axis3d.Axis.set_rotate_label() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axis3d.Axis.html#mpl_toolkits.mplot3d.axis3d.Axis.set_rotate_label].
If there is no z-axis, this will be silently ignored.

	
_hlpr_set_limits(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None)

	Sets the x, y, and z limits for the current axis. Allows some
convenience definitions for the arguments and then calls
matplotlib.axes.Axes.set_xlim() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xlim.html#matplotlib.axes.Axes.set_xlim] and/or
matplotlib.axes.Axes.set_ylim() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_ylim.html#matplotlib.axes.Axes.set_ylim].
mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlim() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlim.html#mpl_toolkits.mplot3d.axes3d.Axes3D.set_zlim].

The x, y, and z arguments can have the following form:

	None: Limits are not set

	sequence: Specify lower and upper values

	dict: Expecting keys lower and/or upper

The sequence or dict values can be:

	None Set automatically / do not set

	numeric Set to this value explicitly

	min Set to the data minimum value on that axis

	max Set to the data maximum value on that axis

	Parameters

	
	x (Union[Sequence[Union[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The limits
to set on the x-axis

	y (Union[Sequence[Union[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The limits
to set on the y-axis

	z (Union[Sequence[Union[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The limits
to set on the z-axis
If there is no z-axis, this will be silently ignored.

	
_hlpr_set_margins(*, margins: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]]] = None, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, tight: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Sets the axes’ margins via matplotlib.axes.Axes.margins() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.margins.html#matplotlib.axes.Axes.margins].

The padding added to each limit of the Axes is the margin times the
data interval.
All input parameters must be floats within the range [0, 1].

Specifying any margin changes only the autoscaling; for example, if
xmargin is not None, then xmargin times the X data interval
will be added to each end of that interval before it is used in
autoscaling.

	Parameters

	
	margins (Union[float [https://docs.python.org/3/library/functions.html#float], Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]], optional) – If a scalar
argument is provided, it specifies both margins of the x-axis
and y-axis limits. If a list- or tuple-like positional
argument is provided, they will be interpreted as xmargin,
and ymargin. If setting the margin on a single axis is
desired, use the keyword arguments described below.

	x (float [https://docs.python.org/3/library/functions.html#float], optional) – Specific margin values for the x-axis and
y-axis, respectively. These cannot be used in combination with
the margins argument, but can be used individually to
alter on e.g., only the y-axis.

	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Specific margin values for the x-axis and
y-axis, respectively. These cannot be used in combination with
the margins argument, but can be used individually to
alter on e.g., only the y-axis.

	tight (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The tight parameter is passed to
matplotlib.axes.Axes.autoscale_view() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.autoscale_view.html#matplotlib.axes.Axes.autoscale_view], which is
executed after a margin is changed; the default here is True,
on the assumption that when margins are specified, no
additional padding to match tick marks is usually desired. Set
tight to None will preserve the previous setting.

	
_hlpr_set_legend(*, use_legend: bool [https://docs.python.org/3/library/functions.html#bool] = True, gather_from_fig: bool [https://docs.python.org/3/library/functions.html#bool] = False, custom_labels: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] = (), hiding_threshold: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, **legend_kwargs)

	Sets a legend for the current axis.

As a first step, this helper tries to extract all relevant legend
handles and labels. If a legend was set previously and no handles and
labels could be extracted in the typical way (i.e., using the
ax.get_legend_handles_labels method) it will be attempted to
retrieve them from existing matplotlib.legend.Legend [https://matplotlib.org/stable/api/legend_api.html#matplotlib.legend.Legend]
objects on the current axis.
If gather_from_fig is given, the whole figure will be inspected,
regardless of whether handles were found previously.

Additionally, all axis-specific handles and labels tracked via
track_handles_labels() will always be added.

Note

	If no handles can be found, the legend is hidden, also meaning
that the legend_kwargs will not be passed on.

	During gathering of handles and labels from the current axis or
the figure, duplicates will be removed; duplicates are detected
via their label strings, not via their handle.

Hint

To set a figure-level legend, use the set_figlegend helper.

	Parameters

	
	use_legend (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to set a legend or not. If
False, the legend will be removed.

	gather_from_fig (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If set, will gather legend
handles and labels from the whole figure. This can be useful to
set if the relevant information is found on another axis or in
a figure legend.

	custom_labels (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If given, use these labels
and associate them with existing labels. Note that if fewer
labels are given than handles are available, those without a
label will not be drawn.

	hiding_threshold (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, will hide legends
that have more than this number of handles registered.

	**legend_kwargs – Passed on to ax.legend

	
_hlpr_set_texts(*, texts: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]])

	Sets multiple text elements for the current axis.

Example configuration:

set_texts:
 texts:
 - x: 0
 y: 1
 s: some text
 # ... more arguments to plt.text

	Parameters

	texts (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A sequence of text specifications, that are
passed to matplotlib.pyplot.text() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html#matplotlib.pyplot.text]

	
_hlpr_annotate(*, annotations: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]])

	Sets multiple annotations for the current axis.

Example configuration:

annotate:
 annotations:
 - xy: [1, 3.14159]
 text: this is π
 xycoords: data
 # ... more arguments to plt.annotate
 - xy: [0, 0]
 xycoords: data
 text: this is zero
 xytext: [0.1, 0.1]
 arrowprops:
 facecolor: black
 shrink: 0.05

	Parameters

	annotations (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A sequence of annotation parameters
which will be passed to matplotlib.pyplot.annotate() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.annotate.html#matplotlib.pyplot.annotate]

	
_hlpr_set_hv_lines(*, hlines: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, vlines: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None)

	Sets one or multiple horizontal or vertical lines using
matplotlib.axes.Axes.axhline() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.axhline.html#matplotlib.axes.Axes.axhline] and / or
matplotlib.axes.Axes.axvline() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.axvline.html#matplotlib.axes.Axes.axvline].

	Parameters

	
	hlines (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – list of numeric positions of the lines or
or list of dicts with key pos determining the position, key
limits determining the relative limits of the line, and all
additional arguments being passed on to the matplotlib
function.

	vlines (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – list of numeric positions of the lines or
or list of dicts with key pos determining the position, key
limits determining the relative limits of the line, and all
additional arguments being passed on to the matplotlib
function.

	
_hlpr_set_scales(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Sets the scales for the current axis

The arguments are used to call
matplotlib.axes.Axes.set_xscale() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xscale.html#matplotlib.axes.Axes.set_xscale] and/or
matplotlib.axes.Axes.set_yscale() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yscale.html#matplotlib.axes.Axes.set_yscale] and
mpl_toolkits.mplot3d.axes3d.Axes3D.set_zscale() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.set_zscale.html#mpl_toolkits.mplot3d.axes3d.Axes3D.set_zscale], respectively.
For string-like arguments, the value is directly used to set the scale
for that axis, e.g. linear, log, symlog.
Otherwise, dict-like arguments are expected where a scale key is
present and defines which type of scale to use. All further arguments
are passed on; these are relevant for the symmetrical logarithmic
scale, for example.

	Parameters

	
	x (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The scales to use on the x-axis

	y (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The scales to use on the y-axis

	z (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The scales to use on the z-axis.
If there is no z-axis, this will be silently ignored.

	
_hlpr_set_ticks(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None)

	Sets the ticks for the current axis

The arguments are used to call
matplotlib.axes.Axes.set_xticks() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticks.html#matplotlib.axes.Axes.set_xticks] or
matplotlib.axes.Axes.set_yticks() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticks.html#matplotlib.axes.Axes.set_yticks] or
mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticks() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticks.html#mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticks],
and matplotlib.axes.Axes.set_xticklabels() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_xticklabels.html#matplotlib.axes.Axes.set_xticklabels] or
matplotlib.axes.Axes.set_yticklabels() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.set_yticklabels.html#matplotlib.axes.Axes.set_yticklabels] or
mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticklabels() [https://matplotlib.org/stable/api/_as_gen/mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticklabels.html#mpl_toolkits.mplot3d.axes3d.Axes3D.set_zticklabels],
respectively.

The dict-like arguments may contain the keys major and/or
minor, referring to major or minor tick locations and labels,
respectively.
They should either be list-like, directly specifying the ticks’
locations, or dict-like requiring a locs key that contains the
ticks’ locations and is passed on to the set_<x/y/z>ticks call.
as ticks argument. Further kwargs such as labels can be given
and are passed on to the set_<x/y/z>ticklabels call.

Example:

set_ticks:
 x:
 major: [2, 4, 6, 8]
 minor:
 locs: [1, 3, 5, 7, 9]
 y:
 major:
 locs: [0, 1000, 2000, 3000]
 labels: [0, 1k, 2k, 3k]
 # ... further kwargs here specify label aesthetics

 z: [-1, 0, +1] # same as z: {major: {locs: [-1, 0, +1]}}

	Parameters

	
	x (Union[list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The ticks and optionally their
labels to set on the x-axis

	y (Union[list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The ticks and optionally their
labels to set on the y-axis

	z (Union[list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The ticks and optionally their
labels to set on the z-axis.
If there is no z-axis, this will be silently ignored.

	
_hlpr_set_tick_locators(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Sets the tick locators for the current axis

The arguments are used to call
ax.{x,y, z}axis.set_{major/minor}_locator, respectively.
The dict-like arguments must contain the keys major and/or
minor, referring to major or minor tick locators. These need to
specify a name that is looked up in matplotlib.ticker [https://matplotlib.org/stable/api/ticker_api.html#module-matplotlib.ticker].
They can contain a list-like args keyword argument that defines
the arguments to pass on as positional args to the called function.
Further kwargs are passed on to
ax.{x,y, z}axis.set_{major/minor}_locator.

Example:

set_tick_locators:
 x:
 major:
 name: MaxNLocator # looked up from matplotlib.ticker
 nbins: 6
 integer: true
 min_n_ticks: 3
 y:
 major:
 name: MultipleLocator
 args: [2]

For more information, see:

	https://matplotlib.org/gallery/ticks_and_spines/tick-locators.html

	https://matplotlib.org/api/_as_gen/matplotlib.axis.Axis.set_major_locator.html

	https://matplotlib.org/api/_as_gen/matplotlib.axis.Axis.set_minor_locator.html

	Parameters

	
	x (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the x-axis tick locator

	y (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the y-axis tick locator

	z (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the z-axis tick locator.
If there is no z-axis, this will be silently ignored.

	
_hlpr_set_tick_formatters(*, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, z: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Sets the tick formatters for the current axis

The arguments are used to call
ax.{x,y, z}axis.set_{major/minor}_formatter, respectively. The
dict-like arguments must contain the keys major and/or minor,
referring to major or minor tick formatters. These need to specify a
name that is looked up in matplotlib.ticker [https://matplotlib.org/stable/api/ticker_api.html#module-matplotlib.ticker].
They can contain a list-like args keyword argument that defines
the arguments to pass on as positional args to the called function.
Further kwargs are passed on to
ax.{x,y, z}axis.set_{major/minor}_formatter.

Example:

set_tick_formatters:
 x:
 major:
 name: StrMethodFormatter
 args: ['{x:.3g}']
 y:
 major:
 name: FuncFormatter
 args: [!dag_result my_formatter_lambda]
 # any kwargs here passed also to FuncFormatter

 z:
 major:
 name: DateFormatter # looked up from matplotlib.dates
 args: ["%H:%M:%S"] # or "%Y-%m-%d"

For more information, see:

	https://matplotlib.org/gallery/ticks_and_spines/tick-formatters.html

	https://matplotlib.org/api/_as_gen/matplotlib.axis.Axis.set_major_formatter.html

	https://matplotlib.org/api/_as_gen/matplotlib.axis.Axis.set_minor_formatter.html

	Parameters

	
	x (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the x-axis tick formatter

	y (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the y-axis tick formatter

	z (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The configuration of the z-axis tick formatter.
If there is no z-axis, this will be silently ignored.

	
_hlpr_call(*, functions: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]], funcs_lookup_dict: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, **shared_kwargs)

	Axis-level helper that can be used to call multiple functions.

Functions can be specified in three ways:

	as string, being looked up from a pre-defined dict

	as 2-tuple (module, name) which will be imported on the fly

	as callable, which will be used directly

The implementation of this is shared with the plot function
multiplot(). See
there for more information.

The figure-level helper figcall is identical to this helper, but is
invoked before the axis-specific helpers are invoked.

Hint

To pass custom callables, use the data transformation framework and
the !dag_result placeholder, see Using data transformation results in the plot configuration.

Note

While most matplotlib-based functions will automatically operate on
the current axis, some function calls may require an axis object.
If so, use the pass_axis_object_as argument, which specifies
the name of the keyword argument as which the current axis is
passed to the function call.

Example:

call:
 functions:
 # Look up function from dict, containing common seaborn and
 # pyplot plotting functions (see multiplot for more info)
 - function: sns.lineplot
 data: !dag_result my_custom_data

 # Import function via `(module, name)` specification
 - function: [matplotlib, pyplot.subplots_adjust]
 left: 0.1
 right: 0.9

 # Pass a custom callable, selected via DAG framework
 - function: !dag_result my_callable
 args: [foo, bar]
 # ... keyword arguments here

 # Pass current axis object as keyword argument
 - function: !dag_result my_callable_operating_on_ax
 pass_axis_object_as: ax

 # Pass helper object itself as keyword argument
 - function: !dag_result my_callable_operating_on_helper
 pass_helper: true

	Parameters

	
	functions (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A sequence of function call
specifications. Each dict needs to contain at least the key
function which determines which function to invoke. Further
arguments are parsed into the positional and keyword arguments
of the to-be-invoked function.

	funcs_lookup_dict (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – If given, will
look up the function names from this dict instead of the
default dict.

	**shared_kwargs – Passed on as keyword arguments to all function
calls in functions.

	
_hlpr_despine(**kwargs)

	Despines the current axis using seaborn.despine() [https://seaborn.pydata.org/generated/seaborn.despine.html#seaborn.despine].

To despine the whole figure, apply this helper to all axes.
Refer to the seaborn documentation for available arguments:
https://seaborn.pydata.org/generated/seaborn.despine.html

	Parameters

	**kwargs – Passed on to seaborn.despine.

dantro.plot.creators package

This sub-package implements non-abstract dantro plot creator classes,
based on BasePlotCreator

	
ALL_PLOT_CREATORS = {'base': <class 'dantro.plot.creators.base.BasePlotCreator'>, 'external': <class 'dantro.plot.creators.pyplot.PyPlotCreator'>, 'multiverse': <class 'dantro.plot.creators.psp.MultiversePlotCreator'>, 'pyplot': <class 'dantro.plot.creators.pyplot.PyPlotCreator'>, 'universe': <class 'dantro.plot.creators.psp.UniversePlotCreator'>}

	A mapping of plot creator names to the corresponding types

Submodules

dantro.plot.creators.base module

This module implements BasePlotCreator, the base class for plot
creators.

The interface is defined as an abstract base class and partly implemented by
the BasePlotCreator, which is no longer abstract but has only the
functionality that is general enough for all derived creators to profit from.

	
_fmt_time(t)

	

	
_DAG_OBJECT_CACHE: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], TransformationDAG] = {}

	A dict holding the previously-used TransformationDAG
objects to allow re-using them in another plot function.
The keys are hashes of the configuration used in creating the DAG.

	
class BasePlotCreator(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, dm: DataManager, plot_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], default_ext: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, exist_ok: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, raise_exc: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **plot_cfg)

	Bases: dantro.abc.AbstractPlotCreator

The base class for plot creators.

It provides the following functionality:

	Resolving a plot function, which can be a directly given callable, an
importable module and name, or a path to a Python file that is to be
imported.

	Parsing plot configuration arguments.

	Optionally, performing data selection from the associated
DataManager using the
data transformation framework.

	Invoking the plot function.

As such, the this base class is agnostic to the exact way of how plot
output is generated; the plot function is responsible for that.

	
EXTENSIONS: Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'all'

	A tuple of supported file extensions.
If all, no checks for the extensions are performed.

	
DEFAULT_EXT = None

	The default file extension to use; is only used if no default extension
is specified during initialization

	
DEFAULT_EXT_REQUIRED: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether a default extension is required or not. If True and the
default_ext property evaluates to False, an error will be raised.

	
POSTPONE_PATH_PREPARATION: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to prepare paths in the base class’s
__call__() method
or not. If the derived class wants to take care of this on their own, this
should be set to True and the
_prepare_path()
method, adjusted or not, should be called at another point of the plot
execution.

	
OUT_PATH_EXIST_OK: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a warning should be shown (instead of an error), when a plot
file already exists at the specified output path

	
DAG_USE_DEFAULT: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether the data transformation framework
is enabled by default; this can still be controlled by the use_dag
argument of the plot configuration.

	
DAG_RESOLVE_PLACEHOLDERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether placeholders in the plot config,
ResultPlaceholder objects, should be
replaced with results from the data transformations.

	
DAG_TO_KWARG_MAPPING: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'dag_object': 'dag', 'results_dict': 'data'}

	The keyword argument names by which to pass the data transformation
results (results_dict) or the TransformationDAG
object itself (dag_object) to the plot function.

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, dm: DataManager, plot_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], default_ext: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, exist_ok: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, raise_exc: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **plot_cfg)

	Create a plot creator instance for a plot with the given name.

Typically, a creator has not be instantiated separately, but the
PlotManager takes care of it.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this plot

	dm (DataManager) – The data manager that contains the data to plot

	default_ext (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The default extension to use; needs
to be in EXTENSIONS, if that class variable is not set to
‘all’. The value given here is needed by the PlotManager to
build the output path.

	exist_ok (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If True, no error will be
raised when a plot already exists at the specified output path.
If None, the value specified in the OUT_PATH_EXIST_OK class
variable will be used to determine this behaviour.
If skip, will skip the plot, allowing other plots to be
carried out; see Skipping Plots.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions during the
plot procedure. This does not pertain to all exceptions, but
only to those that would unnecessarily stop plotting.
Furthermore, whether this setting is used or not depends on the
used creator specialization.

	**plot_cfg – The default configuration for the plot(s) that this
creator is supposed to create.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On bad base_module_file_dir or default_ext

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s name

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s class name

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object; a combination often
used in logging…

	
property dm: DataManager

	Return the DataManager

	
property plot_func: Callable

	Returns the plot function

	
property plot_func_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a readable name of the plot function

	
property plot_cfg: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns a deepcopy of the plot configuration, assuring that plot
configurations are completely independent of each other.

	
property default_ext: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default extension to use for the plots

	
property dag: TransformationDAG

	The associated TransformationDAG object. If not set up, raises.

	
__call__(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], **update_plot_cfg)

	Perform the plot, updating the configuration passed to __init__
with the given values and then calling plot().

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full output path to store the plot at

	**update_plot_cfg – Keys with which to update the default plot
configuration

	Returns

	The return value of the plot() method, which is an
abstract method in
BasePlotCreator.

	
plot(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **func_kwargs)

	Prepares argument for the plot function and invokes it.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path for the resulting file

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the Data Transformation Framework
to select and transform data that can be used in the plotting
function. If not given, will query the plot function attributes
for whether the DAG should be used. If not, the data selection
has to occur separately inside the plot function. Note that
this may require a different plot function signature.

	**func_kwargs – Passed on to the plot function

	
get_ext() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the extension to use for the upcoming plot by checking
the supported extensions and can be subclassed to have different
behaviour.

	
prepare_cfg(*, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], pspace: Union [https://docs.python.org/3/library/typing.html#typing.Union][ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Prepares the plot configuration for the
PlotManager. This function is called by
the manager before the first plot is to be created.

The base implementation just passes the given arguments through.
However, it can be re-implemented by derived classes to change the
behaviour of the plot manager, e.g. by converting a plot configuration
to a parameter space.

	
_abc_impl = <_abc._abc_data object>

	

	
_prepare_path(out_path: str [https://docs.python.org/3/library/stdtypes.html#str], *, exist_ok: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Prepares the output path, creating directories if needed, then
returning the full absolute path.

This is called from __call__() and is meant to postpone
directory creation as far as possible.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute output path to start with

	exist_ok (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If False, will raise if a file of that
name already exists; if True, will emit a warning instead.
If 'skip', will initiate skipping of this plot.

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – Raised on already existing out path and exist_ok
 being False.

	
_check_skipping(*, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	A method that can be specialized by derived plot creators to check
whether a plot should be skipped.
Is invoked from the __call__() method, after
_perform_data_selection() (for plots with activated data
selection via DAG), and prior to _prepare_path()
(such that path creation can be avoided).

In cases where this plot is to be skipped, the custom exception
SkipPlot should be raised,
the error message allowing to specify a reason for skipping the plot.

Note

While the base class method may be a no-op, it should still be
called via super()._check_skipping from the derived classes.

	Parameters

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The full plot configuration

	
_prepare_plot_func_args(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Prepares the arguments passed to the plot function.

The passed keyword arguments are carried over; no positional arguments
are possible.
Subsequently, possible signatures look as follows:

	When using the data transformation framework, there are no
positional arguments.

	When not using the data transformation framework, the only
positional argument is the DataManager
instance that is associated with this plot.

Note

When subclassing this function, the parent method (this one) should
still be called to maintain base functionality.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the data transformation
framework

	**kwargs – Additional kwargs

	Returns

	
	an (empty) tuple of positional arguments and a
	dict of keyword arguments.

	Return type

	Tuple[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_invoke_plot_func(*args, **kwargs)

	Method that invokes the plot function with the prepared arguments.

This additionally allows to generate a DAG visualization in case the
plotting failed or succeeded.

	
_perform_data_selection(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], **shared_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	If this plot creator supports data selection and transformation, it
is carried out in this method.

This method uses a number of other private methods to carry out the
setup of the DAG, computing it and combining its results with the
remaining plot configuration. Those methods have access to a subset of
the whole configuration, thus allowing to parse the parameters that
they need.

This method also sets the _dag attribute, making the created
TransformationDAG object available for further
processing downstream.

Furthermore, this method invokes placeholder resolution by applying
resolve_placeholders() on the plot config.

Note

For specializing the behaviour of the data selection and transform,
it is best to specialize NOT this method, but the more granular
DAG-related private methods.

Warning

If subclassing this method, make sure to either invoke this parent
method or set the _dag attribute in the subclass’s method.
Also note that, when subclassing, the ability to resolve the
placeholders gets lost / has to be re-implemented in the subclass.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The main toggle for whether the DAG
should be used or not. This is passed as default value to
another method, which takes the final decision on whether the
DAG is used or not. If None, will first inspect whether the
plot function declared that the DAG is to be used.
If still None, will NOT use the DAG.

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The plot configuration

	**shared_kwargs – Shared keyword arguments that are passed through
to the helper methods _use_dag() and
_get_dag_params().

	Returns

	
	Whether data selection was used and the plot
	configuration that can be passed on to the main plot
method.

	Return type

	Tuple[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_use_dag(*, use_dag: bool [https://docs.python.org/3/library/functions.html#bool], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the DAG should be used or not. This method extends that of
the base class by additionally checking the plot function attributes
for any information regarding the DAG.

This relies on the
is_plot_func
decorator to set a number of function attributes.

	
_get_dag_params(*, select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, transform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, compute_only: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, dag_options: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, dag_object_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, dag_visualization: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, invocation_options: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **plot_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Filters out and parses parameters that are needed for initialization
of the TransformationDAG in
_setup_dag() and computation in _compute_dag().

	Parameters

	
	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – DAG selection

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – DAG transformation

	compute_only (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – DAG tags to be computed

	dag_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Other DAG options for initialization

	dag_object_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Cache options for the DAG object
itself. Expected keys are read, write, clear.

	dag_visualization (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, controls whether the
DAG used for data transformations should also be plotted, e.g.
to make debugging easier.

	invocation_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Controls whether to pass
certain objects on to the plot functio or not. Supported keys
are pass_dag_object_along and unpack_dag_results, which
take precedence over the plot function attributes of the same
name which are set by the plot function decorator
is_plot_func.

	**plot_kwargs – The remaining plot configuration

	Returns

	Tuple of DAG parameter dict and plot kwargs

	Return type

	Tuple[dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_setup_dag(init_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, read: bool [https://docs.python.org/3/library/functions.html#bool] = False, write: bool [https://docs.python.org/3/library/functions.html#bool] = False, clear: bool [https://docs.python.org/3/library/functions.html#bool] = False, collect_garbage: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → TransformationDAG

	Creates a TransformationDAG object from the
given initialization parameters.
Optionally, will use a hash of the initialization parameters to reuse
a deep copy of a cached object.

In case no cached version was available or caching was disabled, uses
_create_dag() to create the object.

	Parameters

	
	init_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initialization parameters, passed on to the
_create_dag method.

	read (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to read from memory cache

	write (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to write to memory cache

	clear (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to clear the whole memory cache,
can be useful if many objects were stored and memory runs low.
Afterwards, garbage collection may be required to actually free
the memory; see collect_garbage.

	collect_garbage (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will invoke garbage
collection; this may be required after clearing the cache but
may also be useful to invoke separately from that.
If None, will invoke garbage collection automatically if the
cache was set to be cleared.

	use_copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to work on a (deep) copy of the
cached DAG object. This reduces memory footprint, but may not
bring a noticeable speedup.

	
_create_dag(**dag_params) → TransformationDAG

	Creates the actual DAG object

	
_compute_dag(dag: TransformationDAG, *, compute_only: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], **compute_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Compute the dag results.

This checks whether all required tags (set by the
is_plot_func decorator)
are set to be computed.

	
_combine_dag_results_and_plot_cfg(*, dag: TransformationDAG, dag_results: dict [https://docs.python.org/3/library/stdtypes.html#dict], dag_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict of plot configuration and data, where all the
DAG results are stored in.
In case where the DAG results are to be unpacked, the DAG results will
be made available as separate keyword arguments instead of as the
single data keyword argument.

Furthermore, if the plot function specified in its attributes that the
DAG object is to be passed along, this is the place where it is
included or excluded from the arguments.

	
_generate_DAG_vis(*, scenario: str [https://docs.python.org/3/library/stdtypes.html#str], enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, plot_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, export_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = None, when: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, output: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, export: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, generation: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **plot_kwargs) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]]

	Generates a DAG representation according to certain criteria and
using generate_nx_graph(),
then invokes visualize() to
create the actual visualization output.

This method also allows to export the DAG representation using
export_graph(), which can then be used for
externally working with the DAG representation.

Also see DAG Visualization and Graph representation and visualization.

	Parameters

	
	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – The scenario in which the generation is invoked;
this is used to describe the context in which this method was
invoked and also becomes part of the output file name.
See when for scenarios with certain names. If you want to
use a different name, make sure to set when.always, such
that no scenario lookup occurs.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, will return None.

	plot_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether plotting is enabled. The
result of the when evaluation overrules this.

	export_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether exporting is enabled. The
result of the when evaluation overrules this.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if anything
goes wrong within this method. If None, will behave in the same
way as the creator does. For example, if set to False, an
error in generating a DAG representation will not lead to an
error being raised.

	when (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict that specifies in which situations
the generation should actually be carried out. May contain the
following keys:

	always: Will always generate output.

	only_once: If True, will only generate output from
one scenario, skipping further invocations.

	on_compute_error, on_compute_success, and
on_plot_error, on_plot_success: Will generate
output only in certain named scenarios.
These can be a boolean toggle or 'debug' in which
case the creator’s debug flag decides whether output
is generated for that scenario.
Note that the raise_exc argument does not play a
role for that!

	output (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict specifying where the DAG plot and
potential exported files are written to. Allowed keys are:

	plot_dir: If None, will write output aside the
plot output itself. Can also be an absolute path.

	path_fstr: A format string that specifies the actual
output path and should/can contain the keys plot_dir,
name, and scenario.

	export (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Export specification, using networkx’s
write methods. Possible keys:

	manipulate_attrs: Dict that controls manipulation of
node or edge attributes, sometimes necessary for export.
These are passed to
manipulate_attributes().

	any further keyword arguments define the output formats
that are to be used.
They can be of type Dict[str, Union[bool, dict]],
where the string should correspond to the name of a
networkx writer method. The boolean is used to enable
or disable a writer. If a dict is given, its content is
passed to the writer method.
Also see export_graph(), where
this is implemented.

	generation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Graph generation arguments passed to
generate_nx_graph().

	**plot_kwargs – Plotting-related arguments, passed on to
visualize().

	Returns

	
	Either the generated graph object
	or None, if not enabled or when was evaluated to not
generating a DAG representation.

	Return type

	Union[DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], None]

dantro.plot.creators.psp module

Plot creators working on ParamSpaceGroup.
These are based on the PyPlotCreator
and provide additional functionality for data that is stored such a format.

See Plots from Multidimensional Data for more information.

	
class MultiversePlotCreator(*args, psgrp_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Bases: dantro.plot.creators.pyplot.PyPlotCreator

A MultiversePlotCreator is an PyPlotCreator that allows data to be
selected before being passed to the plot function.

	
__init__(*args, psgrp_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Initialize a MultiversePlotCreator

	Parameters

	
	*args – Passed on to parent class.

	psgrp_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the associated
ParamSpaceGroup that is to
be used for these multiverse plots.

	**kwargs – Passed on to parent

	
PSGRP_PATH: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Where the ParamSpaceGroup object is
expected within the DataManager

	
property psgrp: ParamSpaceGroup

	Retrieves the parameter space group associated with this plot
creator by looking up a certain path in the data manager.

	
_check_skipping(*, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Adds a skip condition for plots with this creator:

Controlled by the expected_multiverse_ndim argument, this
plot will be skipped if the dimensionality of the associated
ParamSpaceGroup is not specified in
the set of permissible dimensionalities.
If that argument is not given or None, this check will not be carried
out.

	
_prepare_plot_func_args(*args, select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, select_and_combine: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Prepares the arguments for the plot function.

This also implements the functionality to select and combine data from
the Multiverse and provide it to the plot function. It can do so via
the associated ParamSpaceGroup
directly or by creating a TransformationDAG
that leads to the same results.

Warning

The select_and_combine argument behaves slightly different to
the select argument! In the long term, the select argument
will be deprecated.

	Parameters

	
	*args – Positional arguments to the plot function.

	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, selects and combines multiverse
data using
select().
The result is an xr.Dataset and it is made available to
the plot function as mv_data argument.

	select_and_combine (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, interfaces with the
DAG to select, transform, and combine data from the multiverse
via the DAG.

	**kwargs – Keyword arguments for the plot function. If DAG usage is
enabled, these contain further arguments like transform
that are filtered out accordingly.

	Returns

	
	The (args, kwargs) tuple for calling the plot
	function. These now include either the DAG results or the
additional mv_data key.

	Return type

	Tuple[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If both or neither of the arguments select and/or
 select_and_combine were given.

	
_get_dag_params(*, select_and_combine: dict [https://docs.python.org/3/library/stdtypes.html#dict], **cfg) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Extends the parent method by extracting the select_and_combine
argument that handles MultiversePlotCreator behaviour

	
_create_dag(*, select_and_combine: dict [https://docs.python.org/3/library/stdtypes.html#dict], select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, transform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, select_base: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, select_path_prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **dag_init_params) → TransformationDAG

	Extends the parent method by translating the select_and_combine
argument into selection of tags from a universe subspace, subsequent
transformations, and a combine operation, that aligns the data in
the desired fashion.

This way, the select()
method’s behaviour is emulated in the DAG.

	Parameters

	
	select_and_combine (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The parameters to define which data from
the universes to select and combine before applying further
transformations.

	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional select operations; these are
not applied to each universe but only globally, after the
select_and_combine nodes are added.

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Additional transform
operations that are added to the DAG after both the
select_and_combine- and select-related transformations
were added.

	select_base (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The select base for the select
argument. These are not relevant for the selection that
occurs via the select_and_combine argument and is only set
after all select_and_combine-related transformations are
added to the DAG.

	select_path_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The selection path prefix for
the select argument. Cannot be used here.

	**dag_init_params – Further initialization arguments to the DAG.

	Returns

	The populated DAG object.

	Return type

	TransformationDAG

	
DAG_INVOKE_IN_BASE = True

	Whether DAG invocation should happen in the base class method
_prepare_plot_func_args().
If False, can/need to invoke the data selection separately in the desired
place inside the derived class.

	
DAG_RESOLVE_PLACEHOLDERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether placeholders in the plot config,
ResultPlaceholder objects, should be
replaced with results from the data transformations.

	
DAG_SUPPORTED = True

	Whether this creator supports Data Transformation Framework

	
DAG_TO_KWARG_MAPPING: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'dag_object': 'dag', 'results_dict': 'data'}

	The keyword argument names by which to pass the data transformation
results (results_dict) or the TransformationDAG
object itself (dag_object) to the plot function.

	
DAG_USE_DEFAULT: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether the data transformation framework
is enabled by default; this can still be controlled by the use_dag
argument of the plot configuration.

	
DEFAULT_EXT = None

	The default file extension

	
DEFAULT_EXT_REQUIRED: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a default extension needs to be specified

	
EXTENSIONS: Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'all'

	Allowed file extensions; all means that every extension is allowed
and that there are no checks performed.

	
OUT_PATH_EXIST_OK: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a warning should be shown (instead of an error), when a plot
file already exists at the specified output path

	
PLOT_HELPER_CLS

	alias of dantro.plot.plot_helper.PlotHelper

	
POSTPONE_PATH_PREPARATION: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to prepare paths in the base class’s
__call__() method
or not. If the derived class wants to take care of this on their own, this
should be set to True and the
_prepare_path()
method, adjusted or not, should be called at another point of the plot
execution.

	
__call__(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], **update_plot_cfg)

	Perform the plot, updating the configuration passed to __init__
with the given values and then calling plot().

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full output path to store the plot at

	**update_plot_cfg – Keys with which to update the default plot
configuration

	Returns

	The return value of the plot() method, which is an
abstract method in
BasePlotCreator.

	
_abc_impl = <_abc._abc_data object>

	

	
_build_style_context(**rc_params)

	Constructs the matplotlib style context manager, if parameters were
given, otherwise returns the DoNothingContext

	
_combine_dag_results_and_plot_cfg(*, dag: TransformationDAG, dag_results: dict [https://docs.python.org/3/library/stdtypes.html#dict], dag_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict of plot configuration and data, where all the
DAG results are stored in.
In case where the DAG results are to be unpacked, the DAG results will
be made available as separate keyword arguments instead of as the
single data keyword argument.

Furthermore, if the plot function specified in its attributes that the
DAG object is to be passed along, this is the place where it is
included or excluded from the arguments.

	
_compute_dag(dag: TransformationDAG, *, compute_only: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], **compute_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Compute the dag results.

This checks whether all required tags (set by the
is_plot_func decorator)
are set to be computed.

	
_generate_DAG_vis(*, scenario: str [https://docs.python.org/3/library/stdtypes.html#str], enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, plot_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, export_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = None, when: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, output: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, export: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, generation: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **plot_kwargs) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]]

	Generates a DAG representation according to certain criteria and
using generate_nx_graph(),
then invokes visualize() to
create the actual visualization output.

This method also allows to export the DAG representation using
export_graph(), which can then be used for
externally working with the DAG representation.

Also see DAG Visualization and Graph representation and visualization.

	Parameters

	
	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – The scenario in which the generation is invoked;
this is used to describe the context in which this method was
invoked and also becomes part of the output file name.
See when for scenarios with certain names. If you want to
use a different name, make sure to set when.always, such
that no scenario lookup occurs.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, will return None.

	plot_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether plotting is enabled. The
result of the when evaluation overrules this.

	export_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether exporting is enabled. The
result of the when evaluation overrules this.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if anything
goes wrong within this method. If None, will behave in the same
way as the creator does. For example, if set to False, an
error in generating a DAG representation will not lead to an
error being raised.

	when (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict that specifies in which situations
the generation should actually be carried out. May contain the
following keys:

	always: Will always generate output.

	only_once: If True, will only generate output from
one scenario, skipping further invocations.

	on_compute_error, on_compute_success, and
on_plot_error, on_plot_success: Will generate
output only in certain named scenarios.
These can be a boolean toggle or 'debug' in which
case the creator’s debug flag decides whether output
is generated for that scenario.
Note that the raise_exc argument does not play a
role for that!

	output (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict specifying where the DAG plot and
potential exported files are written to. Allowed keys are:

	plot_dir: If None, will write output aside the
plot output itself. Can also be an absolute path.

	path_fstr: A format string that specifies the actual
output path and should/can contain the keys plot_dir,
name, and scenario.

	export (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Export specification, using networkx’s
write methods. Possible keys:

	manipulate_attrs: Dict that controls manipulation of
node or edge attributes, sometimes necessary for export.
These are passed to
manipulate_attributes().

	any further keyword arguments define the output formats
that are to be used.
They can be of type Dict[str, Union[bool, dict]],
where the string should correspond to the name of a
networkx writer method. The boolean is used to enable
or disable a writer. If a dict is given, its content is
passed to the writer method.
Also see export_graph(), where
this is implemented.

	generation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Graph generation arguments passed to
generate_nx_graph().

	**plot_kwargs – Plotting-related arguments, passed on to
visualize().

	Returns

	
	Either the generated graph object
	or None, if not enabled or when was evaluated to not
generating a DAG representation.

	Return type

	Union[DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], None]

	
_invoke_plot_func(*args, **kwargs)

	Method that invokes the plot function with the prepared arguments.

This additionally allows to generate a DAG visualization in case the
plotting failed or succeeded.

	
_perform_animation(*, hlpr: PlotHelper, style_context, plot_args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], writer: str [https://docs.python.org/3/library/stdtypes.html#str], writer_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation_update_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Prepares the Writer and checks for valid animation config.

	Parameters

	
	hlpr (PlotHelper) – The plot helper

	style_context – The style context to enter before starting animation

	plot_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional arguments to plot_func

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to plot_func

	writer (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of movie writer with which the frames are saved

	writer_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict of writer parameters. These
are associated with the chosen writer via the top level key
in writer_kwargs. Each dictionary container has three
further keys queried, all optional:

	init:
	passed to Writer.__init__ method

	saving:
	passed to Writer.saving method

	grab_frame:
	passed to Writer.grab_frame method

	animation_update_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to the animation
update generator call.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the animation is not supported by the plot_func
 or if the writer is not available

	
_perform_data_selection(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], **shared_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	If this plot creator supports data selection and transformation, it
is carried out in this method.

This method uses a number of other private methods to carry out the
setup of the DAG, computing it and combining its results with the
remaining plot configuration. Those methods have access to a subset of
the whole configuration, thus allowing to parse the parameters that
they need.

This method also sets the _dag attribute, making the created
TransformationDAG object available for further
processing downstream.

Furthermore, this method invokes placeholder resolution by applying
resolve_placeholders() on the plot config.

Note

For specializing the behaviour of the data selection and transform,
it is best to specialize NOT this method, but the more granular
DAG-related private methods.

Warning

If subclassing this method, make sure to either invoke this parent
method or set the _dag attribute in the subclass’s method.
Also note that, when subclassing, the ability to resolve the
placeholders gets lost / has to be re-implemented in the subclass.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The main toggle for whether the DAG
should be used or not. This is passed as default value to
another method, which takes the final decision on whether the
DAG is used or not. If None, will first inspect whether the
plot function declared that the DAG is to be used.
If still None, will NOT use the DAG.

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The plot configuration

	**shared_kwargs – Shared keyword arguments that are passed through
to the helper methods _use_dag() and
_get_dag_params().

	Returns

	
	Whether data selection was used and the plot
	configuration that can be passed on to the main plot
method.

	Return type

	Tuple[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_plot_with_helper(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], helpers: dict [https://docs.python.org/3/library/stdtypes.html#dict], style: dict [https://docs.python.org/3/library/stdtypes.html#dict], func_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], animation: dict [https://docs.python.org/3/library/stdtypes.html#dict], use_dag: bool [https://docs.python.org/3/library/functions.html#bool])

	A helper method that performs plotting using the
PlotHelper.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – plot helper configuration

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – style configuration

	func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plot function arguments, including helpers
and style …

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Animation parameters

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether a DAG is used in preprocessing or not

	
_prepare_path(out_path: str [https://docs.python.org/3/library/stdtypes.html#str], *, exist_ok: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Prepares the output path, creating directories if needed, then
returning the full absolute path.

This is called from __call__() and is meant to postpone
directory creation as far as possible.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute output path to start with

	exist_ok (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If False, will raise if a file of that
name already exists; if True, will emit a warning instead.
If 'skip', will initiate skipping of this plot.

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – Raised on already existing out path and exist_ok
 being False.

	
_prepare_style_context(*, base_style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, rc_file: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, ignore_defaults: bool [https://docs.python.org/3/library/functions.html#bool] = False, **update_rc_params) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Builds a dictionary with rcparams for use in a matplotlib rc context

	Parameters

	
	base_style (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – The matplotlib
style to use as a basis for the generated rc parameters dict.

	rc_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – path to a YAML file containing rc
parameters. These are used to update those of the base styles.

	ignore_defaults (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore the rc
parameters that were given to the __init__ method

	**update_rc_params – All further parameters update those that are
already provided by base_style and/or rc_file arguments.

	Returns

	
	The rc parameters dictionary, a valid dict to enter a
	matplotlib style context with

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid arguments

	
_setup_dag(init_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, read: bool [https://docs.python.org/3/library/functions.html#bool] = False, write: bool [https://docs.python.org/3/library/functions.html#bool] = False, clear: bool [https://docs.python.org/3/library/functions.html#bool] = False, collect_garbage: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → TransformationDAG

	Creates a TransformationDAG object from the
given initialization parameters.
Optionally, will use a hash of the initialization parameters to reuse
a deep copy of a cached object.

In case no cached version was available or caching was disabled, uses
_create_dag() to create the object.

	Parameters

	
	init_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initialization parameters, passed on to the
_create_dag method.

	read (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to read from memory cache

	write (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to write to memory cache

	clear (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to clear the whole memory cache,
can be useful if many objects were stored and memory runs low.
Afterwards, garbage collection may be required to actually free
the memory; see collect_garbage.

	collect_garbage (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will invoke garbage
collection; this may be required after clearing the cache but
may also be useful to invoke separately from that.
If None, will invoke garbage collection automatically if the
cache was set to be cleared.

	use_copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to work on a (deep) copy of the
cached DAG object. This reduces memory footprint, but may not
bring a noticeable speedup.

	
_use_dag(*, use_dag: bool [https://docs.python.org/3/library/functions.html#bool], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the DAG should be used or not. This method extends that of
the base class by additionally checking the plot function attributes
for any information regarding the DAG.

This relies on the
is_plot_func
decorator to set a number of function attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s class name

	
property dag: TransformationDAG

	The associated TransformationDAG object. If not set up, raises.

	
property default_ext: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default extension to use for the plots

	
property dm: DataManager

	Return the DataManager

	
get_ext() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the extension to use for the upcoming plot by checking
the supported extensions and can be subclassed to have different
behaviour.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object; a combination often
used in logging…

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s name

	
plot(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, helpers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **func_kwargs)

	Performs the plot operation.

In addition to the behavior of the base class’s
plot(), this method
integrates the plot helper framework,
style contexts and the
animation mode.

Alternatively, the base module can be loaded from a file path.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path for the resulting file

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Parameters that determine the aesthetics of
the created plot; basically matplotlib rcParams. From them, a
style context is entered before calling the plot function.
Valid keys:

	base_style (str, List[str], optional):
	names of valid matplotlib styles

	rc_file (str, optional):
	path to a YAML RC parameter file that is used to
update the base style

	ignore_defaults (bool, optional):
	Whether to ignore the default style passed to the
__init__ method

	further keyword arguments:
	will update the RC parameter dict yet again. Need be
valid matplotlib RC parameters in order to have any
effect.

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – helper configuration passed to PlotHelper
initialization if enabled

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – animation configuration

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the Data Transformation Framework
to select and transform data that can be used in the plotting
function. If not given, will query the plot function attributes
for whether the DAG should be used.
See Plot Data Selection for more information.

	**func_kwargs – Passed to the imported function

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On superfluous helpers or animation arguments
 in cases where these are not supported

	
property plot_cfg: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns a deepcopy of the plot configuration, assuring that plot
configurations are completely independent of each other.

	
property plot_func: Callable

	Returns the plot function

	
property plot_func_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a readable name of the plot function

	
prepare_cfg(*, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], pspace: Union [https://docs.python.org/3/library/typing.html#typing.Union][ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Prepares the plot configuration for the
PlotManager. This function is called by
the manager before the first plot is to be created.

The base implementation just passes the given arguments through.
However, it can be re-implemented by derived classes to change the
behaviour of the plot manager, e.g. by converting a plot configuration
to a parameter space.

	
class UniversePlotCreator(*args, psgrp_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Bases: dantro.plot.creators.pyplot.PyPlotCreator

A UniversePlotCreator is an PyPlotCreator that allows looping of
all or a selected subspace of universes.

	
__init__(*args, psgrp_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kwargs)

	Initialize a UniversePlotCreator

	Parameters

	
	*args – Passed on to parent class

	psgrp_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Specifies the location of the
ParamSpaceGroup within the
data tree. If given, overwrites the class variable default.

	**kwargs – Passed on to parent class

	
PSGRP_PATH: str [https://docs.python.org/3/library/stdtypes.html#str] = None

	Where the ParamSpaceGroup object is
expected within the DataManager

	
DAG_INVOKE_IN_BASE = True

	Whether DAG invocation should happen in the base class method
_prepare_plot_func_args().
If False, can/need to invoke the data selection separately in the desired
place inside the derived class.

	
DAG_RESOLVE_PLACEHOLDERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether placeholders in the plot config,
ResultPlaceholder objects, should be
replaced with results from the data transformations.

	
DAG_SUPPORTED = True

	Whether this creator supports Data Transformation Framework

	
DAG_TO_KWARG_MAPPING: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'dag_object': 'dag', 'results_dict': 'data'}

	The keyword argument names by which to pass the data transformation
results (results_dict) or the TransformationDAG
object itself (dag_object) to the plot function.

	
DAG_USE_DEFAULT: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether the data transformation framework
is enabled by default; this can still be controlled by the use_dag
argument of the plot configuration.

	
DEFAULT_EXT = None

	The default file extension

	
DEFAULT_EXT_REQUIRED: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a default extension needs to be specified

	
EXTENSIONS: Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'all'

	Allowed file extensions; all means that every extension is allowed
and that there are no checks performed.

	
OUT_PATH_EXIST_OK: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a warning should be shown (instead of an error), when a plot
file already exists at the specified output path

	
PLOT_HELPER_CLS

	alias of dantro.plot.plot_helper.PlotHelper

	
POSTPONE_PATH_PREPARATION: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to prepare paths in the base class’s
__call__() method
or not. If the derived class wants to take care of this on their own, this
should be set to True and the
_prepare_path()
method, adjusted or not, should be called at another point of the plot
execution.

	
__call__(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], **update_plot_cfg)

	Perform the plot, updating the configuration passed to __init__
with the given values and then calling plot().

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full output path to store the plot at

	**update_plot_cfg – Keys with which to update the default plot
configuration

	Returns

	The return value of the plot() method, which is an
abstract method in
BasePlotCreator.

	
_abc_impl = <_abc._abc_data object>

	

	
_build_style_context(**rc_params)

	Constructs the matplotlib style context manager, if parameters were
given, otherwise returns the DoNothingContext

	
_check_skipping(*, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	A method that can be specialized by derived plot creators to check
whether a plot should be skipped.
Is invoked from the __call__() method, after
_perform_data_selection() (for plots with activated data
selection via DAG), and prior to _prepare_path()
(such that path creation can be avoided).

In cases where this plot is to be skipped, the custom exception
SkipPlot should be raised,
the error message allowing to specify a reason for skipping the plot.

Note

While the base class method may be a no-op, it should still be
called via super()._check_skipping from the derived classes.

	Parameters

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The full plot configuration

	
_combine_dag_results_and_plot_cfg(*, dag: TransformationDAG, dag_results: dict [https://docs.python.org/3/library/stdtypes.html#dict], dag_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict of plot configuration and data, where all the
DAG results are stored in.
In case where the DAG results are to be unpacked, the DAG results will
be made available as separate keyword arguments instead of as the
single data keyword argument.

Furthermore, if the plot function specified in its attributes that the
DAG object is to be passed along, this is the place where it is
included or excluded from the arguments.

	
_compute_dag(dag: TransformationDAG, *, compute_only: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], **compute_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Compute the dag results.

This checks whether all required tags (set by the
is_plot_func decorator)
are set to be computed.

	
_create_dag(**dag_params) → TransformationDAG

	Creates the actual DAG object

	
_generate_DAG_vis(*, scenario: str [https://docs.python.org/3/library/stdtypes.html#str], enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, plot_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, export_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = None, when: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, output: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, export: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, generation: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **plot_kwargs) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]]

	Generates a DAG representation according to certain criteria and
using generate_nx_graph(),
then invokes visualize() to
create the actual visualization output.

This method also allows to export the DAG representation using
export_graph(), which can then be used for
externally working with the DAG representation.

Also see DAG Visualization and Graph representation and visualization.

	Parameters

	
	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – The scenario in which the generation is invoked;
this is used to describe the context in which this method was
invoked and also becomes part of the output file name.
See when for scenarios with certain names. If you want to
use a different name, make sure to set when.always, such
that no scenario lookup occurs.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, will return None.

	plot_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether plotting is enabled. The
result of the when evaluation overrules this.

	export_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether exporting is enabled. The
result of the when evaluation overrules this.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if anything
goes wrong within this method. If None, will behave in the same
way as the creator does. For example, if set to False, an
error in generating a DAG representation will not lead to an
error being raised.

	when (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict that specifies in which situations
the generation should actually be carried out. May contain the
following keys:

	always: Will always generate output.

	only_once: If True, will only generate output from
one scenario, skipping further invocations.

	on_compute_error, on_compute_success, and
on_plot_error, on_plot_success: Will generate
output only in certain named scenarios.
These can be a boolean toggle or 'debug' in which
case the creator’s debug flag decides whether output
is generated for that scenario.
Note that the raise_exc argument does not play a
role for that!

	output (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict specifying where the DAG plot and
potential exported files are written to. Allowed keys are:

	plot_dir: If None, will write output aside the
plot output itself. Can also be an absolute path.

	path_fstr: A format string that specifies the actual
output path and should/can contain the keys plot_dir,
name, and scenario.

	export (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Export specification, using networkx’s
write methods. Possible keys:

	manipulate_attrs: Dict that controls manipulation of
node or edge attributes, sometimes necessary for export.
These are passed to
manipulate_attributes().

	any further keyword arguments define the output formats
that are to be used.
They can be of type Dict[str, Union[bool, dict]],
where the string should correspond to the name of a
networkx writer method. The boolean is used to enable
or disable a writer. If a dict is given, its content is
passed to the writer method.
Also see export_graph(), where
this is implemented.

	generation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Graph generation arguments passed to
generate_nx_graph().

	**plot_kwargs – Plotting-related arguments, passed on to
visualize().

	Returns

	
	Either the generated graph object
	or None, if not enabled or when was evaluated to not
generating a DAG representation.

	Return type

	Union[DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], None]

	
_invoke_plot_func(*args, **kwargs)

	Method that invokes the plot function with the prepared arguments.

This additionally allows to generate a DAG visualization in case the
plotting failed or succeeded.

	
_perform_animation(*, hlpr: PlotHelper, style_context, plot_args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], writer: str [https://docs.python.org/3/library/stdtypes.html#str], writer_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation_update_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Prepares the Writer and checks for valid animation config.

	Parameters

	
	hlpr (PlotHelper) – The plot helper

	style_context – The style context to enter before starting animation

	plot_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional arguments to plot_func

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to plot_func

	writer (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of movie writer with which the frames are saved

	writer_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict of writer parameters. These
are associated with the chosen writer via the top level key
in writer_kwargs. Each dictionary container has three
further keys queried, all optional:

	init:
	passed to Writer.__init__ method

	saving:
	passed to Writer.saving method

	grab_frame:
	passed to Writer.grab_frame method

	animation_update_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to the animation
update generator call.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the animation is not supported by the plot_func
 or if the writer is not available

	
_perform_data_selection(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], **shared_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	If this plot creator supports data selection and transformation, it
is carried out in this method.

This method uses a number of other private methods to carry out the
setup of the DAG, computing it and combining its results with the
remaining plot configuration. Those methods have access to a subset of
the whole configuration, thus allowing to parse the parameters that
they need.

This method also sets the _dag attribute, making the created
TransformationDAG object available for further
processing downstream.

Furthermore, this method invokes placeholder resolution by applying
resolve_placeholders() on the plot config.

Note

For specializing the behaviour of the data selection and transform,
it is best to specialize NOT this method, but the more granular
DAG-related private methods.

Warning

If subclassing this method, make sure to either invoke this parent
method or set the _dag attribute in the subclass’s method.
Also note that, when subclassing, the ability to resolve the
placeholders gets lost / has to be re-implemented in the subclass.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The main toggle for whether the DAG
should be used or not. This is passed as default value to
another method, which takes the final decision on whether the
DAG is used or not. If None, will first inspect whether the
plot function declared that the DAG is to be used.
If still None, will NOT use the DAG.

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The plot configuration

	**shared_kwargs – Shared keyword arguments that are passed through
to the helper methods _use_dag() and
_get_dag_params().

	Returns

	
	Whether data selection was used and the plot
	configuration that can be passed on to the main plot
method.

	Return type

	Tuple[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_plot_with_helper(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], helpers: dict [https://docs.python.org/3/library/stdtypes.html#dict], style: dict [https://docs.python.org/3/library/stdtypes.html#dict], func_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], animation: dict [https://docs.python.org/3/library/stdtypes.html#dict], use_dag: bool [https://docs.python.org/3/library/functions.html#bool])

	A helper method that performs plotting using the
PlotHelper.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – plot helper configuration

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – style configuration

	func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plot function arguments, including helpers
and style …

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Animation parameters

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether a DAG is used in preprocessing or not

	
_prepare_path(out_path: str [https://docs.python.org/3/library/stdtypes.html#str], *, exist_ok: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Prepares the output path, creating directories if needed, then
returning the full absolute path.

This is called from __call__() and is meant to postpone
directory creation as far as possible.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute output path to start with

	exist_ok (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If False, will raise if a file of that
name already exists; if True, will emit a warning instead.
If 'skip', will initiate skipping of this plot.

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – Raised on already existing out path and exist_ok
 being False.

	
_prepare_style_context(*, base_style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, rc_file: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, ignore_defaults: bool [https://docs.python.org/3/library/functions.html#bool] = False, **update_rc_params) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Builds a dictionary with rcparams for use in a matplotlib rc context

	Parameters

	
	base_style (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – The matplotlib
style to use as a basis for the generated rc parameters dict.

	rc_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – path to a YAML file containing rc
parameters. These are used to update those of the base styles.

	ignore_defaults (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore the rc
parameters that were given to the __init__ method

	**update_rc_params – All further parameters update those that are
already provided by base_style and/or rc_file arguments.

	Returns

	
	The rc parameters dictionary, a valid dict to enter a
	matplotlib style context with

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid arguments

	
_setup_dag(init_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, read: bool [https://docs.python.org/3/library/functions.html#bool] = False, write: bool [https://docs.python.org/3/library/functions.html#bool] = False, clear: bool [https://docs.python.org/3/library/functions.html#bool] = False, collect_garbage: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → TransformationDAG

	Creates a TransformationDAG object from the
given initialization parameters.
Optionally, will use a hash of the initialization parameters to reuse
a deep copy of a cached object.

In case no cached version was available or caching was disabled, uses
_create_dag() to create the object.

	Parameters

	
	init_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initialization parameters, passed on to the
_create_dag method.

	read (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to read from memory cache

	write (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to write to memory cache

	clear (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to clear the whole memory cache,
can be useful if many objects were stored and memory runs low.
Afterwards, garbage collection may be required to actually free
the memory; see collect_garbage.

	collect_garbage (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will invoke garbage
collection; this may be required after clearing the cache but
may also be useful to invoke separately from that.
If None, will invoke garbage collection automatically if the
cache was set to be cleared.

	use_copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to work on a (deep) copy of the
cached DAG object. This reduces memory footprint, but may not
bring a noticeable speedup.

	
_use_dag(*, use_dag: bool [https://docs.python.org/3/library/functions.html#bool], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the DAG should be used or not. This method extends that of
the base class by additionally checking the plot function attributes
for any information regarding the DAG.

This relies on the
is_plot_func
decorator to set a number of function attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s class name

	
property dag: TransformationDAG

	The associated TransformationDAG object. If not set up, raises.

	
property default_ext: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default extension to use for the plots

	
property dm: DataManager

	Return the DataManager

	
get_ext() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the extension to use for the upcoming plot by checking
the supported extensions and can be subclassed to have different
behaviour.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object; a combination often
used in logging…

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s name

	
plot(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, helpers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **func_kwargs)

	Performs the plot operation.

In addition to the behavior of the base class’s
plot(), this method
integrates the plot helper framework,
style contexts and the
animation mode.

Alternatively, the base module can be loaded from a file path.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path for the resulting file

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Parameters that determine the aesthetics of
the created plot; basically matplotlib rcParams. From them, a
style context is entered before calling the plot function.
Valid keys:

	base_style (str, List[str], optional):
	names of valid matplotlib styles

	rc_file (str, optional):
	path to a YAML RC parameter file that is used to
update the base style

	ignore_defaults (bool, optional):
	Whether to ignore the default style passed to the
__init__ method

	further keyword arguments:
	will update the RC parameter dict yet again. Need be
valid matplotlib RC parameters in order to have any
effect.

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – helper configuration passed to PlotHelper
initialization if enabled

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – animation configuration

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the Data Transformation Framework
to select and transform data that can be used in the plotting
function. If not given, will query the plot function attributes
for whether the DAG should be used.
See Plot Data Selection for more information.

	**func_kwargs – Passed to the imported function

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On superfluous helpers or animation arguments
 in cases where these are not supported

	
property plot_cfg: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns a deepcopy of the plot configuration, assuring that plot
configurations are completely independent of each other.

	
property plot_func: Callable

	Returns the plot function

	
property plot_func_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a readable name of the plot function

	
property psgrp: ParamSpaceGroup

	Retrieves the parameter space group associated with this plot
creator by looking up a certain path in the data manager.

	
prepare_cfg(*, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], pspace: Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Converts a regular plot configuration to one that can be configured
to iterate over multiple universes via a parameter space.

This is implemented in the following way:

	Extracts the universes key from the configuration and parses
it, ensuring it is a valid dict for subspace specification

	Creates a new ParamSpace object that additionally contains the
parameter dimensions corresponding to the universes. These are
stored in a _coords dict inside the returned plot configuration.

	Apply the parsed universes key to activate a subspace of the
newly created parameter space.

	As a mapping from coordinates to state numbers is needed, the
corresponding active state mapping is saved as an attribute to
the plot creator, such that it is available later when
the state number needs to be retrieved only be the info of the
current coordinates.

	
_prepare_plot_func_args(*args, _coords: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, _uni_id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Prepares the arguments for the plot function and implements the
special arguments required for ParamSpaceGroup-like data: selection of
a single universe from the given coordinates.

	Parameters

	
	*args – Passed along to parent method

	_coords (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The current coordinate descriptor which
is then used to retrieve a certain point in parameter space
from the state map attribute.

	_uni_id (int [https://docs.python.org/3/library/functions.html#int], optional) – If given, use this ID to select a universe
from the ParamSpaceGroup (and ignore the _coords argument)

	**kwargs – Passed along to parent method

	Returns

	(args, kwargs) for the plot function

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
_get_dag_params(*, uni: ParamSpaceStateGroup, **cfg) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Makes the selected universe available and adjusts DAG parameters
such that selections can be based on that universe.

dantro.plot.creators.pyplot module

This module implements the PyPlotCreator class, which
specializes on creating matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot]-based plots.

	
class PyPlotCreator(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **parent_kwargs)

	Bases: dantro.plot.creators.base.BasePlotCreator

A plot creator that is specialized on creating plots using
matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot]. On top of the capabilities of
BasePlotCreator, this class
contains specializations for the matplotlib-based plotting backend:

	The PlotHelper provides an interface
to a wide range of the matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot] interface, allowing to
let the plot function itself focus on generating a visual representation
of the data and removing boilerplate code; see The PlotHelper.

	There are so-called “style contexts” that a plot can be generated in,
allowing to have consistent and easily adjsutable aesthetics; see
Adjusting a Plot’s Style.

	By including the matplotlib.animation [https://matplotlib.org/stable/api/animation_api.html#module-matplotlib.animation] framework, allows to
easily implement plot functions that generate animation output.

For more information, refer to the user manual.

	
EXTENSIONS: Union[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'all'

	Allowed file extensions; all means that every extension is allowed
and that there are no checks performed.

	
DEFAULT_EXT = None

	The default file extension

	
DEFAULT_EXT_REQUIRED: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a default extension needs to be specified

	
DAG_SUPPORTED = True

	Whether this creator supports Data Transformation Framework

	
DAG_INVOKE_IN_BASE = True

	Whether DAG invocation should happen in the base class method
_prepare_plot_func_args().
If False, can/need to invoke the data selection separately in the desired
place inside the derived class.

	
PLOT_HELPER_CLS

	Which PlotHelper class to use

alias of dantro.plot.plot_helper.PlotHelper

	
__init__(name: str [https://docs.python.org/3/library/stdtypes.html#str], *, style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **parent_kwargs)

	Initialize a creator for matplotlib.pyplot [https://matplotlib.org/stable/api/pyplot_summary.html#module-matplotlib.pyplot]-based plots.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of this plot

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The default style context defintion to
enter before calling the plot function. This can be used to
specify the aesthetics of a plot. It is evaluated here once,
stored as attribute, and can be updated when the plot method
is actually called.

	**parent_kwargs – Passed to the parent’s
__init__().

	
DAG_RESOLVE_PLACEHOLDERS: bool [https://docs.python.org/3/library/functions.html#bool] = True

	Whether placeholders in the plot config,
ResultPlaceholder objects, should be
replaced with results from the data transformations.

	
DAG_TO_KWARG_MAPPING: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] = {'dag_object': 'dag', 'results_dict': 'data'}

	The keyword argument names by which to pass the data transformation
results (results_dict) or the TransformationDAG
object itself (dag_object) to the plot function.

	
DAG_USE_DEFAULT: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether the data transformation framework
is enabled by default; this can still be controlled by the use_dag
argument of the plot configuration.

	
OUT_PATH_EXIST_OK: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether a warning should be shown (instead of an error), when a plot
file already exists at the specified output path

	
POSTPONE_PATH_PREPARATION: bool [https://docs.python.org/3/library/functions.html#bool] = False

	Whether to prepare paths in the base class’s
__call__() method
or not. If the derived class wants to take care of this on their own, this
should be set to True and the
_prepare_path()
method, adjusted or not, should be called at another point of the plot
execution.

	
__call__(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], **update_plot_cfg)

	Perform the plot, updating the configuration passed to __init__
with the given values and then calling plot().

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The full output path to store the plot at

	**update_plot_cfg – Keys with which to update the default plot
configuration

	Returns

	The return value of the plot() method, which is an
abstract method in
BasePlotCreator.

	
_abc_impl = <_abc._abc_data object>

	

	
_check_skipping(*, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	A method that can be specialized by derived plot creators to check
whether a plot should be skipped.
Is invoked from the __call__() method, after
_perform_data_selection() (for plots with activated data
selection via DAG), and prior to _prepare_path()
(such that path creation can be avoided).

In cases where this plot is to be skipped, the custom exception
SkipPlot should be raised,
the error message allowing to specify a reason for skipping the plot.

Note

While the base class method may be a no-op, it should still be
called via super()._check_skipping from the derived classes.

	Parameters

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The full plot configuration

	
_combine_dag_results_and_plot_cfg(*, dag: TransformationDAG, dag_results: dict [https://docs.python.org/3/library/stdtypes.html#dict], dag_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict of plot configuration and data, where all the
DAG results are stored in.
In case where the DAG results are to be unpacked, the DAG results will
be made available as separate keyword arguments instead of as the
single data keyword argument.

Furthermore, if the plot function specified in its attributes that the
DAG object is to be passed along, this is the place where it is
included or excluded from the arguments.

	
_compute_dag(dag: TransformationDAG, *, compute_only: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]], **compute_kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Compute the dag results.

This checks whether all required tags (set by the
is_plot_func decorator)
are set to be computed.

	
_create_dag(**dag_params) → TransformationDAG

	Creates the actual DAG object

	
_generate_DAG_vis(*, scenario: str [https://docs.python.org/3/library/stdtypes.html#str], enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, plot_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, export_enabled: bool [https://docs.python.org/3/library/functions.html#bool] = True, raise_exc: bool [https://docs.python.org/3/library/functions.html#bool] = None, when: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, output: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, export: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, generation: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **plot_kwargs) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph]]

	Generates a DAG representation according to certain criteria and
using generate_nx_graph(),
then invokes visualize() to
create the actual visualization output.

This method also allows to export the DAG representation using
export_graph(), which can then be used for
externally working with the DAG representation.

Also see DAG Visualization and Graph representation and visualization.

	Parameters

	
	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – The scenario in which the generation is invoked;
this is used to describe the context in which this method was
invoked and also becomes part of the output file name.
See when for scenarios with certain names. If you want to
use a different name, make sure to set when.always, such
that no scenario lookup occurs.

	enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False, will return None.

	plot_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether plotting is enabled. The
result of the when evaluation overrules this.

	export_enabled (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether exporting is enabled. The
result of the when evaluation overrules this.

	raise_exc (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to raise exceptions if anything
goes wrong within this method. If None, will behave in the same
way as the creator does. For example, if set to False, an
error in generating a DAG representation will not lead to an
error being raised.

	when (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict that specifies in which situations
the generation should actually be carried out. May contain the
following keys:

	always: Will always generate output.

	only_once: If True, will only generate output from
one scenario, skipping further invocations.

	on_compute_error, on_compute_success, and
on_plot_error, on_plot_success: Will generate
output only in certain named scenarios.
These can be a boolean toggle or 'debug' in which
case the creator’s debug flag decides whether output
is generated for that scenario.
Note that the raise_exc argument does not play a
role for that!

	output (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict specifying where the DAG plot and
potential exported files are written to. Allowed keys are:

	plot_dir: If None, will write output aside the
plot output itself. Can also be an absolute path.

	path_fstr: A format string that specifies the actual
output path and should/can contain the keys plot_dir,
name, and scenario.

	export (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Export specification, using networkx’s
write methods. Possible keys:

	manipulate_attrs: Dict that controls manipulation of
node or edge attributes, sometimes necessary for export.
These are passed to
manipulate_attributes().

	any further keyword arguments define the output formats
that are to be used.
They can be of type Dict[str, Union[bool, dict]],
where the string should correspond to the name of a
networkx writer method. The boolean is used to enable
or disable a writer. If a dict is given, its content is
passed to the writer method.
Also see export_graph(), where
this is implemented.

	generation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Graph generation arguments passed to
generate_nx_graph().

	**plot_kwargs – Plotting-related arguments, passed on to
visualize().

	Returns

	
	Either the generated graph object
	or None, if not enabled or when was evaluated to not
generating a DAG representation.

	Return type

	Union[DiGraph [https://networkx.org/documentation/stable/reference/classes/digraph.html#networkx.DiGraph], None]

	
_get_dag_params(*, select: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, transform: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, compute_only: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, dag_options: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, dag_object_cache: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, dag_visualization: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, invocation_options: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **plot_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Filters out and parses parameters that are needed for initialization
of the TransformationDAG in
_setup_dag() and computation in _compute_dag().

	Parameters

	
	select (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – DAG selection

	transform (Sequence[dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – DAG transformation

	compute_only (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – DAG tags to be computed

	dag_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Other DAG options for initialization

	dag_object_cache (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Cache options for the DAG object
itself. Expected keys are read, write, clear.

	dag_visualization (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, controls whether the
DAG used for data transformations should also be plotted, e.g.
to make debugging easier.

	invocation_options (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Controls whether to pass
certain objects on to the plot functio or not. Supported keys
are pass_dag_object_along and unpack_dag_results, which
take precedence over the plot function attributes of the same
name which are set by the plot function decorator
is_plot_func.

	**plot_kwargs – The remaining plot configuration

	Returns

	Tuple of DAG parameter dict and plot kwargs

	Return type

	Tuple[dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_invoke_plot_func(*args, **kwargs)

	Method that invokes the plot function with the prepared arguments.

This additionally allows to generate a DAG visualization in case the
plotting failed or succeeded.

	
_perform_data_selection(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], **shared_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	If this plot creator supports data selection and transformation, it
is carried out in this method.

This method uses a number of other private methods to carry out the
setup of the DAG, computing it and combining its results with the
remaining plot configuration. Those methods have access to a subset of
the whole configuration, thus allowing to parse the parameters that
they need.

This method also sets the _dag attribute, making the created
TransformationDAG object available for further
processing downstream.

Furthermore, this method invokes placeholder resolution by applying
resolve_placeholders() on the plot config.

Note

For specializing the behaviour of the data selection and transform,
it is best to specialize NOT this method, but the more granular
DAG-related private methods.

Warning

If subclassing this method, make sure to either invoke this parent
method or set the _dag attribute in the subclass’s method.
Also note that, when subclassing, the ability to resolve the
placeholders gets lost / has to be re-implemented in the subclass.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – The main toggle for whether the DAG
should be used or not. This is passed as default value to
another method, which takes the final decision on whether the
DAG is used or not. If None, will first inspect whether the
plot function declared that the DAG is to be used.
If still None, will NOT use the DAG.

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The plot configuration

	**shared_kwargs – Shared keyword arguments that are passed through
to the helper methods _use_dag() and
_get_dag_params().

	Returns

	
	Whether data selection was used and the plot
	configuration that can be passed on to the main plot
method.

	Return type

	Tuple[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_prepare_path(out_path: str [https://docs.python.org/3/library/stdtypes.html#str], *, exist_ok: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Prepares the output path, creating directories if needed, then
returning the full absolute path.

This is called from __call__() and is meant to postpone
directory creation as far as possible.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The absolute output path to start with

	exist_ok (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]]) – If False, will raise if a file of that
name already exists; if True, will emit a warning instead.
If 'skip', will initiate skipping of this plot.

	Raises

	FileExistsError [https://docs.python.org/3/library/exceptions.html#FileExistsError] – Raised on already existing out path and exist_ok
 being False.

	
_prepare_plot_func_args(*, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Prepares the arguments passed to the plot function.

The passed keyword arguments are carried over; no positional arguments
are possible.
Subsequently, possible signatures look as follows:

	When using the data transformation framework, there are no
positional arguments.

	When not using the data transformation framework, the only
positional argument is the DataManager
instance that is associated with this plot.

Note

When subclassing this function, the parent method (this one) should
still be called to maintain base functionality.

	Parameters

	
	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the data transformation
framework

	**kwargs – Additional kwargs

	Returns

	
	an (empty) tuple of positional arguments and a
	dict of keyword arguments.

	Return type

	Tuple[tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
_setup_dag(init_params: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, read: bool [https://docs.python.org/3/library/functions.html#bool] = False, write: bool [https://docs.python.org/3/library/functions.html#bool] = False, clear: bool [https://docs.python.org/3/library/functions.html#bool] = False, collect_garbage: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_copy: bool [https://docs.python.org/3/library/functions.html#bool] = True) → TransformationDAG

	Creates a TransformationDAG object from the
given initialization parameters.
Optionally, will use a hash of the initialization parameters to reuse
a deep copy of a cached object.

In case no cached version was available or caching was disabled, uses
_create_dag() to create the object.

	Parameters

	
	init_params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Initialization parameters, passed on to the
_create_dag method.

	read (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to read from memory cache

	write (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to write to memory cache

	clear (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to clear the whole memory cache,
can be useful if many objects were stored and memory runs low.
Afterwards, garbage collection may be required to actually free
the memory; see collect_garbage.

	collect_garbage (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, will invoke garbage
collection; this may be required after clearing the cache but
may also be useful to invoke separately from that.
If None, will invoke garbage collection automatically if the
cache was set to be cleared.

	use_copy (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to work on a (deep) copy of the
cached DAG object. This reduces memory footprint, but may not
bring a noticeable speedup.

	
_use_dag(*, use_dag: bool [https://docs.python.org/3/library/functions.html#bool], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether the DAG should be used or not. This method extends that of
the base class by additionally checking the plot function attributes
for any information regarding the DAG.

This relies on the
is_plot_func
decorator to set a number of function attributes.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s class name

	
property dag: TransformationDAG

	The associated TransformationDAG object. If not set up, raises.

	
property default_ext: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the default extension to use for the plots

	
property dm: DataManager

	Return the DataManager

	
get_ext() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the extension to use for the upcoming plot by checking
the supported extensions and can be subclassed to have different
behaviour.

	
property logstr: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the classname and name of this object; a combination often
used in logging…

	
property name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this creator’s name

	
property plot_cfg: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns a deepcopy of the plot configuration, assuring that plot
configurations are completely independent of each other.

	
property plot_func: Callable

	Returns the plot function

	
property plot_func_name: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a readable name of the plot function

	
prepare_cfg(*, plot_cfg: dict [https://docs.python.org/3/library/stdtypes.html#dict], pspace: Union [https://docs.python.org/3/library/typing.html#typing.Union][ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], ParamSpace [https://paramspace.readthedocs.io/en/latest/api/paramspace.paramspace.html#paramspace.paramspace.ParamSpace]]

	Prepares the plot configuration for the
PlotManager. This function is called by
the manager before the first plot is to be created.

The base implementation just passes the given arguments through.
However, it can be re-implemented by derived classes to change the
behaviour of the plot manager, e.g. by converting a plot configuration
to a parameter space.

	
plot(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, helpers: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, **func_kwargs)

	Performs the plot operation.

In addition to the behavior of the base class’s
plot(), this method
integrates the plot helper framework,
style contexts and the
animation mode.

Alternatively, the base module can be loaded from a file path.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path for the resulting file

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Parameters that determine the aesthetics of
the created plot; basically matplotlib rcParams. From them, a
style context is entered before calling the plot function.
Valid keys:

	base_style (str, List[str], optional):
	names of valid matplotlib styles

	rc_file (str, optional):
	path to a YAML RC parameter file that is used to
update the base style

	ignore_defaults (bool, optional):
	Whether to ignore the default style passed to the
__init__ method

	further keyword arguments:
	will update the RC parameter dict yet again. Need be
valid matplotlib RC parameters in order to have any
effect.

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – helper configuration passed to PlotHelper
initialization if enabled

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – animation configuration

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the Data Transformation Framework
to select and transform data that can be used in the plotting
function. If not given, will query the plot function attributes
for whether the DAG should be used.
See Plot Data Selection for more information.

	**func_kwargs – Passed to the imported function

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On superfluous helpers or animation arguments
 in cases where these are not supported

	
_plot_with_helper(*, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], helpers: dict [https://docs.python.org/3/library/stdtypes.html#dict], style: dict [https://docs.python.org/3/library/stdtypes.html#dict], func_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], animation: dict [https://docs.python.org/3/library/stdtypes.html#dict], use_dag: bool [https://docs.python.org/3/library/functions.html#bool])

	A helper method that performs plotting using the
PlotHelper.

	Parameters

	
	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output path

	helpers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – plot helper configuration

	style (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – style configuration

	func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Plot function arguments, including helpers
and style …

	animation (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Animation parameters

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether a DAG is used in preprocessing or not

	
_prepare_style_context(*, base_style: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, rc_file: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, ignore_defaults: bool [https://docs.python.org/3/library/functions.html#bool] = False, **update_rc_params) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Builds a dictionary with rcparams for use in a matplotlib rc context

	Parameters

	
	base_style (Union[str [https://docs.python.org/3/library/stdtypes.html#str], List[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – The matplotlib
style to use as a basis for the generated rc parameters dict.

	rc_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – path to a YAML file containing rc
parameters. These are used to update those of the base styles.

	ignore_defaults (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to ignore the rc
parameters that were given to the __init__ method

	**update_rc_params – All further parameters update those that are
already provided by base_style and/or rc_file arguments.

	Returns

	
	The rc parameters dictionary, a valid dict to enter a
	matplotlib style context with

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid arguments

	
_build_style_context(**rc_params)

	Constructs the matplotlib style context manager, if parameters were
given, otherwise returns the DoNothingContext

	
_perform_animation(*, hlpr: PlotHelper, style_context, plot_args: tuple [https://docs.python.org/3/library/stdtypes.html#tuple], plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], writer: str [https://docs.python.org/3/library/stdtypes.html#str], writer_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, animation_update_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Prepares the Writer and checks for valid animation config.

	Parameters

	
	hlpr (PlotHelper) – The plot helper

	style_context – The style context to enter before starting animation

	plot_args (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – positional arguments to plot_func

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – keyword arguments to plot_func

	writer (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of movie writer with which the frames are saved

	writer_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict of writer parameters. These
are associated with the chosen writer via the top level key
in writer_kwargs. Each dictionary container has three
further keys queried, all optional:

	init:
	passed to Writer.__init__ method

	saving:
	passed to Writer.saving method

	grab_frame:
	passed to Writer.grab_frame method

	animation_update_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed to the animation
update generator call.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the animation is not supported by the plot_func
 or if the writer is not available

dantro.plot.funcs package

Plotting functions that can be used by the
PyPlotCreator and derived plot
creators.

Submodules

dantro.plot.funcs._multiplot module

Implements config-configurable function invocation that can be used for
applying function calls to a plot.
This is used in multiplot() plot and
the _hlpr_call() helper function.

	
MULTIPLOT_FUNC_KINDS = {'plt.bar': <function bar>, 'plt.barh': <function barh>, 'plt.contour': <function contour>, 'plt.errorbar': <function errorbar>, 'plt.fill': <function fill>, 'plt.hist': <function hist>, 'plt.hist2d': <function hist2d>, 'plt.imshow': <function imshow>, 'plt.loglog': <function loglog>, 'plt.pcolormesh': <function pcolormesh>, 'plt.pie': <function pie>, 'plt.plot': <function plot>, 'plt.polar': <function polar>, 'plt.quiver': <function quiver>, 'plt.scatter': <function scatter>, 'plt.semilogx': <function fill>, 'plt.semilogy': <function semilogy>, 'plt.streamplot': <function streamplot>, 'plt.table': <function table>, 'sns.barplot': <function barplot>, 'sns.boxenplot': <function boxenplot>, 'sns.boxplot': <function boxplot>, 'sns.countplot': <function countplot>, 'sns.despine': <function despine>, 'sns.ecdfplot': <function ecdfplot>, 'sns.heatmap': <function heatmap>, 'sns.histplot': <function histplot>, 'sns.kdeplot': <function kdeplot>, 'sns.lineplot': <function lineplot>, 'sns.pointplot': <function pointplot>, 'sns.regplot': <function regplot>, 'sns.residplot': <function residplot>, 'sns.rugplot': <function rugplot>, 'sns.scatterplot': <function scatterplot>, 'sns.stripplot': <function stripplot>, 'sns.swarmplot': <function swarmplot>, 'sns.violinplot': <function violinplot>}

	The default-available plot kinds for the
multiplot() function.

Details of the seaborn-related plots can be found here in the
seaborn docs [https://seaborn.pydata.org/api.html].

	
MULTIPLOT_CAUTION_FUNC_NAMES = ('sns.scatterplot', 'sns.lineplot', 'sns.histplot', 'sns.kdeplot', 'sns.ecdfplot', 'sns.rugplot', 'sns.stripplot', 'sns.swarmplot', 'sns.boxplot', 'sns.violinplot', 'sns.boxenplot', 'sns.pointplot', 'sns.barplot', 'sns.countplot', 'sns.regplot', 'sns.residplot', 'sns.heatmap', 'plt.fill', 'plt.scatter', 'plt.plot', 'plt.polar', 'plt.loglog', 'plt.semilogx', 'plt.semilogy', 'plt.errorbar', 'plt.hist', 'plt.hist2d', 'plt.bar', 'plt.barh', 'plt.pie', 'plt.table', 'plt.imshow', 'plt.pcolormesh', 'plt.contour', 'plt.quiver', 'plt.streamplot')

	The multiplot functions that emit a warning if they do not get any arguments
when called. This is helpful for functions that e.g. require a data
argument but do not fail or warn if no such argument is passed on to them.

	
parse_function_specs(*, _hlpr: PlotHelper, _funcs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, _shared_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, function: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]], args: list [https://docs.python.org/3/library/stdtypes.html#list] = None, pass_axis_object_as: str [https://docs.python.org/3/library/stdtypes.html#str] = None, pass_helper: bool [https://docs.python.org/3/library/functions.html#bool] = False, **func_kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable], list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Parses a function specification used in the invoke_function helper.
If function is a string it is looked up from the _funcs dict.

See parse_and_invoke_function() and
multiplot().

	Parameters

	
	_hlpr (PlotHelper) – The currently
used PlotHelper instance

	_funcs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – The lookup dictionary for callables

	_shared_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Shared kwargs that passed on to
all multiplot functions. They are recursively updated with
the individual plot functions’ func_kwargs.

	function (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable, Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The callable
function object or the name of the plot function to look up.
If given as 2-tuple (module, name), will attempt an import of
that module.

	args (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – The positional arguments for the plot function

	pass_axis_object_as (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, will add a keyword
argument with this name to pass the current axis object to the
to-be-invoked function.

	pass_helper (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If true, passes the helper instance to
the function call as keyword argument hlpr.

	**func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The function kwargs to be passed on to the
function object.

	Returns

	
	A tuple of function name, callable,
	positional arguments, and keyword arguments.

	Return type

	Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Callable, list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
parse_and_invoke_function(*, hlpr: PlotHelper, shared_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], func_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict], show_hints: bool [https://docs.python.org/3/library/functions.html#bool], call_num: int [https://docs.python.org/3/library/functions.html#int], funcs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, caution_func_names: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Any [https://docs.python.org/3/library/typing.html#typing.Any]

	Parses function arguments and then calls
multiplot().

	Parameters

	
	hlpr (PlotHelper) – The currently used PlotHelper instance

	funcs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – The lookup dictionary for the
plot functions. If not given, will use a default lookup dictionary
with a set of seaborn and matplotlib functions.

	shared_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments shared between function calls

	func_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments for this function in particular

	show_hints (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show hints

	call_num (int [https://docs.python.org/3/library/functions.html#int]) – The number of this plot, for easier identification

	caution_func_names (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – a list of function names that
will trigger a log message if no function kwargs were given.
If not explicitly given, will use some defaults.

	Returns

	return value of plot function call

	Return type

	Any

dantro.plot.funcs._utils module

A module that implements a bunch of plot utilities used in the plotting
functions. These can be shared tools between the plotting functions.

	
plot_errorbar(*, ax, x: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], y: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], yerr: ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], fill_between: bool [https://docs.python.org/3/library/functions.html#bool] = False, fill_between_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **errorbar_kwargs)

	Given the data and (optionally) the y-error data, plots a single
errorbar line. With fill_between=True, a shaded area is plotted instead
of the errorbar markers.

The following fill_between_kwargs defaults are assumed:

	color = line_color

	alpha = 0.2 * line_alpha

	lw = 0.

	Parameters

	
	ax – The axis to plot on

	x (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The x data to use

	y (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The y-data to use for ax.errorbar. Needs to be
1D and have coordinates associated which will be used for the
x-values.

	yerr (ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The y-error data

	fill_between (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use plt.fill_between or
plt.errorbar to plot y-errors

	fill_between_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Passed on to plt.fill_between

	**errorbar_kwargs – Passed on to plt.errorbar

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On non-1D data

	Returns

	The matplotlib legend handle of the errorbar line or of the errorbands

dantro.plot.funcs.basic module

Holds basic plot functions for use with PyPlotCreator

	
lineplot(dm: DataManager, *, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], y: str [https://docs.python.org/3/library/stdtypes.html#str], x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, fmt: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, save_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **plot_kwargs)

	Performs a simple lineplot using matplotlib.pyplot.plot() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot].

	Parameters

	
	dm (DataManager) – The data manager from which to retrieve the data

	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to store the plot to

	y (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to get to the y-data from the data tree

	x (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to get to the x-data from the data tree

	save_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments for
matplotlib.pyplot.savefig() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig]

	**plot_kwargs – Passed on to matplotlib.pyplot.plot() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot].

dantro.plot.funcs.generic module

Generic, DAG-based plot functions for the
PyPlotCreator and derived plot
creators.

	
_XR_PLOT_KINDS = {'contour': ('x', 'y', 'col', 'row'), 'contourf': ('x', 'y', 'col', 'row'), 'hist': (), 'imshow': ('x', 'y', 'col', 'row'), 'line': ('x', 'hue', 'col', 'row'), 'pcolormesh': ('x', 'y', 'col', 'row'), 'scatter': ('hue', 'col', 'row'), 'step': ('x', 'col', 'row')}

	The available plot kinds for the xarray plotting interface, together with
the supported layout specifier keywords.

	
_FACET_GRID_KINDS = {'contour': ('x', 'y', 'col', 'row', 'frames'), 'contourf': ('x', 'y', 'col', 'row', 'frames'), 'errorbars': ('x', 'hue', 'col', 'row', 'frames'), 'hist': ('frames',), 'imshow': ('x', 'y', 'col', 'row', 'frames'), 'line': ('x', 'hue', 'col', 'row', 'frames'), 'pcolormesh': ('x', 'y', 'col', 'row', 'frames'), 'scatter': ('hue', 'col', 'row', 'frames'), 'scatter3d': ('hue', 'markersize', 'col', 'row', 'frames'), 'step': ('x', 'col', 'row', 'frames')}

	The available plot kinds for the dantro plotting interface, together with
the supported layout specifiers, which include the frames option.

	
_AUTO_PLOT_KINDS = {1: 'line', 2: 'pcolormesh', 3: 'pcolormesh', 4: 'pcolormesh', 5: 'pcolormesh', 'with_hue': 'line', 'with_x_and_y': 'pcolormesh', 'dataset': 'scatter', 'fallback': 'hist'}

	A mapping from data dimensionality to preferred plot kind, used in automatic
plot kind selection. This assumes the specifiers of _FACET_GRID_KINDS

	
_FACET_GRID_FUNCS: Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable] = {'errorbars': <function make_facet_grid_plot.__call__.<locals>.fgplot>, 'scatter3d': <function make_facet_grid_plot.__call__.<locals>.fgplot>}

	A dict mapping additional facet grid kinds to callables.
This is populated by the make_facet_grid_plot decorator.

	
determine_plot_kind(d: Union [https://docs.python.org/3/library/typing.html#typing.Union][DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]], *, kind: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], default_kind_map: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {1: 'line', 2: 'pcolormesh', 3: 'pcolormesh', 4: 'pcolormesh', 5: 'pcolormesh', 'with_hue': 'line', 'with_x_and_y': 'pcolormesh', 'dataset': 'scatter', 'fallback': 'hist'}, **plot_kwargs) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Determines the plot kind to use for the given data. If kind: auto,
this will determine the plot kind depending on the dimensionality of the
data and other (potentially fixed) encoding specifiers. Otherwise, it will
simply return kind.

What if layout encodings were partly fixed? There are two special cases
where this is of relevance, and both these cases are covered explicitly:

	If both x and y are given, line- or hist-like plot
kinds are no longer possible; hence, a pcolormesh-like kind has
to be chosen.

	In turn, if hue was given, pcolormesh-like plot kinds are no
longer applicable, thus a line-like argument needs to be chosen.

These two special cases are specified via the extra keys with_x_and_y
and with_hue in the kind mapping.

A kind mapping may look like this:

1: "line",
2: "pcolormesh",
3: "pcolormesh",
4: "pcolormesh",
5: "pcolormesh",
"with_hue": "line", # used when `hue` is explicitly set
"with_x_and_y": "pcolormesh", # used when _both_ `x` and `y` were set
"dataset": "scatter", # used for xr.Dataset-like data
"fallback": "hist", # used when none of the above matches

	Parameters

	
	d (Union[DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray], Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]]) – The data for which to
determine the plot kind.

	kind (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The given kind argument. If it is auto,
the kind_map is used to determine the kind from the
dimensionality of d.
If it is a dict, auto is implied and the dict is assumed to be
a (ndim -> kind) mapping, updating the default_kind_map.

	default_kind_map (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The default mapping to use for
kind: auto, with keys being d’s dimensionality and values
being the plot kind to use.
There are two special keys, fallback and dataset. The
value belonging to dataset is used for data that is dataset-
like, i.e. does not have an ndim attribute. The value of
fallback specifies the plot kind for data dimensionalities
that match no other key.

	**plot_kwargs – All remaining plot function arguments, including any
layout encoding arguments that aim to fix a dimension; these are
used to determine the with_hue and with_x_and_y special
cases. Everything else is ignored.

	Returns

	
	The selected plot kind. This is equal to the given kind if
	it was None or a string unequal to auto.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
determine_encoding(dims: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]], *, kind: str [https://docs.python.org/3/library/stdtypes.html#str], auto_encoding: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]], default_encodings: dict [https://docs.python.org/3/library/stdtypes.html#dict], allow_y_for_x: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]] = ('line',), plot_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Determines the layout encoding for the given plot kind and the available
data dimensions (as specified by the dims argument).

If auto_encoding does not evaluate to true or kind is None, this
function does nothing and simply returns all given plotting arguments.

Otherwise, it uses the chosen plot kind to associate layout specifiers
with dimension names of d.
The available layout encoding specifiers (x, y, col etc.) can
be specified in two ways:

	By default, default_encodings is used as a map from plot kind to
a sequence of available layout specifiers.

	If auto_encoding is a dictionary, the default map will be
updated with that dictionary.

The association is done in the following way:

	Inspecting plot_kwargs, all layout encoding specifiers are
extracted, dropping those that evaluate to False.

	The encodings mapping is determined (see above).

	The available dimension names are determined from dims.

	Depending on kind and the already fixed specifiers, the free
encoding specifiers and dimension names are extracted.

	These free specifiers are associated with free dimension names,
in order of descending dimension size.

Example: Assume, the available specifiers are ('x', 'y', 'col') and
the data has dimensions dim0, dim1 and dim2. Let’s further say
that y was already fixed to dim2, leaving x and col as free
specifiers and dim0 and dim1 as free dimensions.
With x being specified before col in the list of available
specifiers, x would be associated to the remaining dimension with the
larger size and col to the remaining one.

An encodings mapping may look like this:

"scatter": ("hue", "col", "row"),
"line": ("x", "hue", "col", "row"),
"step": ("x", "col", "row"),
"contourf": ("x", "y", "col", "row"),
"contour": ("x", "y", "col", "row"),
"imshow": ("x", "y", "col", "row"),
"pcolormesh": ("x", "y", "col", "row"),
"hist": (),

This function also implements automatic column wrapping, aiming to
produce a more square-like figure with column wrapping. The prerequisites
are the following:

	The dims argument is a dict, containing size information

	The col_wrap argument is given and set to "auto"

	The col specifier is in use

	The row specifier is not used, i.e. wrapping is possible

	There are more than three columns

In such a case, col_wrap will be set to ceil(sqrt(num_cols)).
Otherwise, the entry will be removed from the plot arguments.

	Parameters

	
	dims (Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]) – The dimension names (and, if
given as dict: their sizes) that are to be encoded. If no sizes are
provided, the assignment order will be the same as in the given
sequence of dimension names. If sizes are given, these will be used
to sort the dimension names in descending order of their sizes.

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – The chosen plot kind. If this was None, will directly
return, because auto-encoding information is missing.

	auto_encoding (Union[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Whether to perform auto-encoding.
If a dict, will regard it as a mapping of available encodings and
update default_encodings.

	default_encodings (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A map from plot kinds to available layout
specifiers, e.g. {"line": ("x", "hue", "col", "row")}.

	allow_y_for_x (List[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A list of plot kinds for which the
following replacement will be allowed: if a y specifier is
given but no x specifier, the "x" in the list of
available encodings will be replaced by a "y". This is to
support plots that allow either an x or a y specifier,
like the line kind.

	plot_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The actual plot function arguments, including any
layout encoding arguments that aim to fix a dimension. Everything
else is ignored.

	
class make_facet_grid_plot(*, map_as: str [https://docs.python.org/3/library/stdtypes.html#str], encodings: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]], supported_hue_styles: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, register_as_kind: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = True, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, drop_kwargs: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]] = ('_fg', 'meta_data', 'hue_style', 'add_guide'), parse_cmap_and_norm_kwargs: bool [https://docs.python.org/3/library/functions.html#bool] = True, **default_kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is a decorator class that transforms a plot function that works on
a single axis into one that supports faceting via
xarray.plot.FacetGrid [https://docs.xarray.dev/en/stable/generated/xarray.plot.FacetGrid.html#xarray.plot.FacetGrid].

Additionally, it allows to register the plotting function with the generic
facet_grid() plot by adding the
callable to _FACET_GRID_FUNCS.

	
MAP_FUNCS = {'dataarray': <function make_facet_grid_plot.<lambda>>, 'dataarray_line': <function make_facet_grid_plot.<lambda>>, 'dataset': <function make_facet_grid_plot.<lambda>>}

	The available mapping functions in xarray.plot.FacetGrid [https://docs.xarray.dev/en/stable/generated/xarray.plot.FacetGrid.html#xarray.plot.FacetGrid]

	
DEFAULT_ENCODINGS = ('col', 'row', 'frames')

	The default encodings the facet grid supplies; these are those supported
by the generic facet grid function

	
DEFAULT_DROP_KWARGS = ('_fg', 'meta_data', 'hue_style', 'add_guide')

	The default kwargs that are to be dropped rather than passed on to the
wrapped plotting function.
Can be customized via drop_kwargs argument.

	
__init__(*, map_as: str [https://docs.python.org/3/library/stdtypes.html#str], encodings: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]], supported_hue_styles: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, register_as_kind: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]] = True, overwrite_existing: bool [https://docs.python.org/3/library/functions.html#bool] = False, drop_kwargs: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]] = ('_fg', 'meta_data', 'hue_style', 'add_guide'), parse_cmap_and_norm_kwargs: bool [https://docs.python.org/3/library/functions.html#bool] = True, **default_kwargs)

	Initialize the decorator, making the decorated function capable of
performing a facet grid plot.

	Parameters

	
	map_as (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which mapping to use. Available: dataset,
dataarray and dataarray_line.

	encodings (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The encodings supported by the wrapped
plot function, e.g. ("x", "hue").
Note that these need to be dimensionality-reducing encodings
that have a qualitatively similar effect as col & row
in that they consume a data dimension. This is in contrast to
plots that may represent multiple data variables, e.g. if the
data comes from a xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset]; those should not
be specified here.

	supported_hue_styles (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Which hue styles are
supported by the wrapped plot function. It is suggested to set
this value if mapping via dataset or dataarray_line in
order to disallow configurations that will not work with the
wrapped plot function. If set to None, no check will be done.

	register_as_kind (Union[bool [https://docs.python.org/3/library/functions.html#bool], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – If boolean, controls
whether to register the wrapped function with the generic
facet grid plot, using its own name. If a string, uses that
name for registration.

	overwrite_existing (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to overwrite an
existing registration in _FACET_GRID_FUNCS. If False, an
existing entry of the same register_as_kind value will
lead to an error.

	drop_kwargs (Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Which keyword arguments to
drop before invocation of the wrapped function; this can be
useful to trim down the signature of the wrapped function.

	parse_cmap_and_norm_kwargs (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to parse
colormap-related plot function arguments using the
parse_cmap_and_norm_kwargs()
function. Should be set to false if the decorated plot function
takes care of these arguments itself.

	**default_kwargs – Additional arguments that are passed to the
single-axis plotting function. These are used both when calling
it via the selected mapping function and when invoking it
without a facet grid.
These are recursively updated with those given upon plot
function invocation.

	
parse_wpf_kwargs(data, **kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses the keyword arguments in preparation for invoking the wrapped
plot function. This can happen both in context of a facet grid mapping
and a single invocation.

	
__call__(plot_single_axis: Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Generates a standalone DAG-based plotting function that supports
faceting. Additionally, integrates it as kind for the
general facet grid plotting function by adding it to the global
_FACET_GRID_FUNCS dictionary.

	
facet_grid(*, data: dict [https://docs.python.org/3/library/stdtypes.html#dict], hlpr: PlotHelper, kind: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, frames: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, auto_encoding: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = False, suptitle_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, squeeze: bool [https://docs.python.org/3/library/functions.html#bool] = True, **plot_kwargs)

	A generic facet grid plot function for high dimensional data.

This function calls the data['data'].plot function if no plot kind
is given, otherwise data['data'].plot.<kind>.
It is designed for plotting with xarray objects [http://xarray.pydata.org/en/stable/plotting.html],
i.e. xarray.DataArray [https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html#xarray.DataArray] and xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset].
Specifying the kind of plot requires the data to be of one of those types
and have a dimensionality that can be represented in these plots. See
the correponding API documentation [https://xarray.pydata.org/en/stable/api.html#plotting] for more information.

In most cases, this function creates a so-called
xarray.plot.FacetGrid [https://docs.xarray.dev/en/stable/generated/xarray.plot.FacetGrid.html#xarray.plot.FacetGrid] object that automatically layouts and
chooses a visual representation that fits the dimensionality of the data.
To specify which data dimension should be represented in which way, it
supports a declarative syntax: via the optional keyword arguments x,
y, row, col, and/or hue (available options are listed in
the corresponding plot function documentation [https://xarray.pydata.org/en/stable/api.html#plotting]),
the representation of the data dimensions can be selected. This is
referred to as “layout encoding”.

dantro not only wraps this interface, but adds the following functionality:

	the frames layout encoding argument, which behaves in the same
way as the other encodings, but leads to an animation being
generated, thus opening up one further dimension of representation,

	the auto_encoding feature, which allows to select layout-
encodings automatically,

	and the kind: 'auto' option, which can be used in conjunction
with auto_encoding to choose the plot kind automatically as well.

	allows col_wrap: 'auto', which selects the value such that the
figure becomes more square-like (requires auto_encoding: true)

	allows to register additional plot kind values that create plots
with a custom single-axis plotting function, using the
make_facet_grid_plot
decorator.

For details about auto-encoding and how the plot kind is chosen, see
determine_encoding()
and determine_plot_kind().

Note

When specifying frames, the animation arguments need to be
specified. See here for more information
on the expected animation parameters.

The value of the animation.enabled key is not relevant for this
function; it will automatically enter or exit animation mode,
depending on whether the frames argument is given or not. This uses
the animation mode switching
feature.

Note

Internally, this function calls .squeeze on the selected data, thus
being more tolerant with data that has size-1 dimension coordinates.
To suppress this behaviour, set the squeeze argument accordingly.

Warning

Depending on kind and the dimensionality of the data, some plot
functions might create their own figure, disregarding any previously
set up figure. This includes the figure from the plot helper.

To control figure aesthetics, you can either specify matplotlib RC
style parameters (via the style argument),
or you can use the plot_kwargs to pass arguments to the respective
plot functions. For the latter, refer to the respective documentation
to find out about available arguments.

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The data selected by the data transformation framework,
expecting the data key.

	hlpr (PlotHelper) – The plot helper

	kind (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The kind of plot to use. Options are:
contourf, contour, imshow, line, pcolormesh,
step, hist, scatter, errorbars and any plot kinds
that were additionally registered via the
make_facet_grid_plot
decorator.
With auto, dantro chooses an appropriate kind by itself; this
setting is useful when also using the auto_encoding feature;
see Automatically selecting plot kind for more information.
If None is given, xarray automatically determines it using the
dimensionality of the data, frequently falling back to hist
for higher-dimensional data or lacking specifiers.

	frames (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Data dimension from which to create animation
frames. If given, this results in the creation of an animation. If
not given, a single plot is generated. Note that this requires
animation options as part of the plot configuration.

	auto_encoding (Union[bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Whether to choose the
layout encoding options automatically. For further options, can
pass a dict. See Auto-encoding of plot layout for more info.

	suptitle_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Key passed on to the PlotHelper’s
set_suptitle helper function. Only used if animations are
enabled. The title entry can be a format string with the
following keys, which are updated for each frame of the animation:
dim, value. Default: {dim:} = {value:.3g}.

	squeeze (bool [https://docs.python.org/3/library/functions.html#bool], optional) – whether to squeeze the data before plotting,
such that size-1 dimensions do not take up encoding dimensions.

	**plot_kwargs – Passed on to <data>.plot or <data>.plot.<kind>
These should include the layout encoding specifiers (x, y,
hue, col, and/or row).

	Raises

	
	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – Upon unsupported kind value

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Upon any upstream error in invocation of the xarray
 plotting capabilities. This wraps the given error message and
 provides additional information that helps to track down why the
 plotting failed.

	
errorbars(*, data: dict [https://docs.python.org/3/library/stdtypes.html#dict], hlpr: PlotHelper, **kwargs)

	

	
scatter3d(*, data: dict [https://docs.python.org/3/library/stdtypes.html#dict], hlpr: PlotHelper, **kwargs)

	

dantro.plot.funcs.graph module

Plot functions to draw networkx.Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph] objects.

Todo

Should really integrate utopya GraphPlot here!

	
_wiggle_pos(pos: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, x: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, y: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, seed: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Wiggles positions by absolute random amplitudes in x and y direction

	Parameters

	
	pos (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Positions dict with values being x and y positions

	x (float [https://docs.python.org/3/library/functions.html#float], optional) – Absolute wiggle amplitude

	y (float [https://docs.python.org/3/library/functions.html#float], optional) – Absolute wiggle amplitude

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – Seed for the numpy.random.RandomState [https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState]
that is used for drawing random numbers. Set to a fixed value to
always get the same positions.

	
_get_positions(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *, model: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]], wiggle: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the positions dict for the given graph, created from a networkx
layouting algorithm of a certain name or an arbitrary callable.

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph object for which to create the layout

	model (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – Name of the layouting model or the
layouting function itself.
If starting with graphviz_<prog>, will invoke
networkx.drawing.nx_agraph.graphviz_layout() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_agraph.graphviz_layout.html#networkx.drawing.nx_agraph.graphviz_layout] with the
given value for prog. Note that these only take a single
keyword argument, args.
If it is a string, it’s looked up from the networkx namespace.
If it is a callable, it is invoked with g as only positional
argument and **kwargs as keyword arguments.

	wiggle (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, will postprocess the positions dict
by randomly wiggling x and y coordinates according to the absolute
amplitudes given as values.

	**kwargs – Passed on to the layouting algorithm.

	
get_positions(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *, model: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = 'spring', model_kwargs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, fallback: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, silent_fallback: bool [https://docs.python.org/3/library/functions.html#bool] = False, **kwargs) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the positions dict for the given graph, created from a networkx
layouting algorithm of a certain name or an arbitrary callable.

This is a wrapper around _get_positions() which allows to specify
a fallback layouting model to use in case the first one fails for whatever
reason.

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph object for which to create the layout

	model (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – Name of the layouting model or
the layouting function itself.
If starting with graphviz_<prog>, will invoke
networkx.drawing.nx_agraph.graphviz_layout() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_agraph.graphviz_layout.html#networkx.drawing.nx_agraph.graphviz_layout] with the
given value for prog. Note that these only take a single
keyword argument, args.
If it is a string, it’s looked up from the networkx namespace.
If it is a callable, it is invoked with g as only positional
argument and **kwargs as keyword arguments.

	model_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A dict where keys correspond to names
of layouting models and values are parameters that are to be passed
to the layouting function. This dict may contain more arguments
than required, only the model key is looked up here. This can
be useful for providing a wider set of defaults. These defaults
are not considered when model is a callable.

	fallback (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – The fallback model name (if
a string) or a dict containing the key model and further
kwargs.

	silent_fallback (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to log a visible message
about the fallback or a more discrete one.

	**kwargs – Passed on to the layouting algorithm in addition to the
selected entry from model_kwargs. Keys given here update those
from model_kwargs.
Also, these are not passed on to the fallback invocation.

	
_draw_graph(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *, ax: Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes] = None, drawing: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}, layout: dict [https://docs.python.org/3/library/stdtypes.html#dict] = {}) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Draws a graph using
networkx.drawing.nx_pylab.draw_networkx_nodes() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_nodes.html#networkx.drawing.nx_pylab.draw_networkx_nodes],
networkx.drawing.nx_pylab.draw_networkx_edges() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edges.html#networkx.drawing.nx_pylab.draw_networkx_edges], and
networkx.drawing.nx_pylab.draw_networkx_labels() [https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_labels.html#networkx.drawing.nx_pylab.draw_networkx_labels].

Warning

This function is not yet completed and may change anytime.

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph to draw

	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Where to store it to

	drawing (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Drawing arguments, containing the
nodes, edges and labels keys. The labels key
can contain the from_attr key which will read the attribute
specified there and use it for the label.

	layout (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Used to generate node positions via the
get_positions() function.

dantro.plot.funcs.multiplot module

Generic, DAG-based multiplot function for the
PyPlotCreator and derived plot
creators.

	
multiplot(*, hlpr: PlotHelper, to_plot: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]]]], data: dict [https://docs.python.org/3/library/stdtypes.html#dict], funcs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, show_hints: bool [https://docs.python.org/3/library/functions.html#bool] = True, **shared_kwargs) → None [https://docs.python.org/3/library/constants.html#None]

	Consecutively call multiple plot functions on one or multiple axes.

to_plot contains all relevant information for the functions to plot.
If to_plot is list-like the plot functions are plotted on the current
axes created through the hlpr.
If to_plot is dict-like, the keys specify the coordinate pair selecting
an ax to plot on, e.g. (0,0), while the values specify a list of plot
function configurations to apply consecutively.
Each list entry specifies one function plot and is parsed via the
parse_function_specs()
function.

The multiplot works with any plot function that either operates on the
current axis and does not create a new figure or does not require an
axis at all.

Note

While most functions will automatically operate on the current axis,
some function calls may require an axis object.
If so, use the pass_axis_object_as argument to specify the name of
the keyword argument as which the current axis is to be passed to the
function call.

Look at the multiplot documentation for further
information.

Example

A simple to_plot specification for a single axis may look like
this:

to_plot:
 - function: sns.lineplot
 data: !dag_result data
 # Note that especially seaborn plot functions require a
 # `data` input argument that can conveniently be
 # provided via the `!dag_result` YAML-tag.
 # If not provided, nothing is plotted without emitting
 # a warning.
 - function: sns.despine

A to_plot specification for a two-column subplot could look like
this:

to_plot:
 [0,0]:
 - function: sns.lineplot
 data: !dag_result data
 - # ... more here ...
 [1,0]:
 - function: sns.scatterplot
 data: !dag_result data

If function is a string it is looked up from the following dictionary:

Seaborn -
https://seaborn.pydata.org/api.html

Relational plots
"sns.scatterplot": _sns.scatterplot,
"sns.lineplot": _sns.lineplot,

Distribution plots
"sns.histplot": _sns.histplot,
"sns.kdeplot": _sns.kdeplot,
"sns.ecdfplot": _sns.ecdfplot,
"sns.rugplot": _sns.rugplot,

Categorical plots
"sns.stripplot": _sns.stripplot,
"sns.swarmplot": _sns.swarmplot,
"sns.boxplot": _sns.boxplot,
"sns.violinplot": _sns.violinplot,
"sns.boxenplot": _sns.boxenplot,
"sns.pointplot": _sns.pointplot,
"sns.barplot": _sns.barplot,
"sns.countplot": _sns.countplot,

Regression plots
"sns.regplot": _sns.regplot,
"sns.residplot": _sns.residplot,

Matrix plots
"sns.heatmap": _sns.heatmap,

Utility functions
"sns.despine": _sns.despine,

Matplotlib -
https://matplotlib.org/tutorials/introductory/sample_plots.html

Relational plots
"plt.fill": _plt.fill,
"plt.scatter": _plt.scatter,
"plt.plot": _plt.plot,
"plt.polar": _plt.polar,
"plt.loglog": _plt.loglog,
"plt.semilogx": _plt.fill,
"plt.semilogy": _plt.semilogy,
"plt.errorbar": _plt.errorbar,

Distribution plots
"plt.hist": _plt.hist,
"plt.hist2d": _plt.hist2d,

Categorical plots
"plt.bar": _plt.bar,
"plt.barh": _plt.barh,
"plt.pie": _plt.pie,
"plt.table": _plt.table,

Matrix plots
"plt.imshow": _plt.imshow,
"plt.pcolormesh": _plt.pcolormesh,

Vector plots
"plt.contour": _plt.contour,
"plt.quiver": _plt.quiver,
"plt.streamplot": _plt.streamplot,

It is also possible to import callables on the fly. To do so, pass a
2-tuple of (module, name) to function, which will then be loaded
using import_module_or_object().

	Parameters

	
	hlpr (PlotHelper) – The PlotHelper instance for
this plot, carrying the to-be-plotted-on figure object.

	to_plot (Union[list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The plot specifications.
If list-like, assumes that there is only a single axis and applies
all functions to that axis.
If dict-like, expects 2-tuples for keys and selects the axis before
commencing to plot. Beforehand, the figure needs to have been set
up accordingly via the setup_figure helper.

	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Data from TransformationDAG selection. These results are
ignored; data needs to be passed via the result placeholders!
See above.

	funcs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable], optional) – If given, use this dictionary
to look up functions by name. If not given, will use a default
dict with a set of matplotlib and seaborn functions.

	show_hints (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to show hints in the case of not passing
any arguments to a plot function.

	**shared_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Shared kwargs for all plot functions.
They are recursively updated, if to_plot specifies the same
kwargs.

Warning

Note that especially seaborn plot functions require a data
argument that needs to be passed via a !dag_result key,
see Using data transformation results in the plot configuration.
The multiplot function neither expects nor automatically passes a
data DAG-node to the individual functions.

Note

If a plot fails and the helper is configured to not raise on a failing
invocation, the logger will inform about the error. This allows to
still apply other functions on the same axis.

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On a non-list-like or non-dict-like to_plot argument.

dantro.plot.utils package

Subpackage that organizes general plotting utilities.

Submodules

dantro.plot.utils._file_writer module

This module implements custom matplotlib movie writers; basically, these
are specializations of matplotlib.animation.AbstractMovieWriter [https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.AbstractMovieWriter.html#matplotlib.animation.AbstractMovieWriter].

	
class FileWriter(*, name_padding: int [https://docs.python.org/3/library/functions.html#int] = 7, fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = '{dir:}/{num:0{pad:}d}.{ext:}')

	Bases: matplotlib.animation.AbstractMovieWriter [https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.AbstractMovieWriter.html#matplotlib.animation.AbstractMovieWriter]

A specialization of matplotlib.animation.AbstractMovieWriter [https://matplotlib.org/stable/api/_as_gen/matplotlib.animation.AbstractMovieWriter.html#matplotlib.animation.AbstractMovieWriter]
that writes each frame to a file.

It is registered as the frames writer.

	
__init__(*, name_padding: int [https://docs.python.org/3/library/functions.html#int] = 7, fstr: str [https://docs.python.org/3/library/stdtypes.html#str] = '{dir:}/{num:0{pad:}d}.{ext:}')

	Initialize the FileWriter, which adheres to the
matplotlib.animation [https://matplotlib.org/stable/api/animation_api.html#module-matplotlib.animation] interface and can be used to write
each frame of an animation to individual files.

	Parameters

	
	name_padding (int [https://docs.python.org/3/library/functions.html#int], optional) – How wide the numbering should be

	fstr (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The format string to generate the name

	
setup()

	Called when entering the saving context

	
finish()

	Called when finished

	
classmethod isAvailable() → bool [https://docs.python.org/3/library/functions.html#bool]

	Always available.

	
saving(fig: Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure], base_outfile: str [https://docs.python.org/3/library/stdtypes.html#str], dpi: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, **setup_kwargs)

	Create an instance of the context manager

	Parameters

	
	fig (Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]) – The figure object to save

	base_outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path this movie writer would store a movie
file at; the file name will be interpreted as the name of the
directory that the frames are saved to; the file extension
is retained.

	dpi (int [https://docs.python.org/3/library/functions.html#int], optional) – The desired densiy

	**setup_kwargs – Passed to setup method

	Returns

	this object, which also is a context manager.

	Return type

	FileWriter

	
grab_frame(**savefig_kwargs)

	Stores a single frame

	
__enter__()

	Called when entering context.

Makes sure that the output directory exists.

	
__exit__(*args)

	Called when exiting context.

Closes the figure.

	
_abc_impl = <_abc._abc_data object>

	

	
property frame_size

	A tuple (width, height) in pixels of a movie frame.

dantro.plot.utils.color_mngr module

Implements the ColorManager which simplifies working with
matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap] and related objects.

	
NORMS = {'BoundaryNorm': <class 'matplotlib.colors.BoundaryNorm'>, 'CenteredNorm': <class 'matplotlib.colors.CenteredNorm'>, 'FuncNorm': <class 'matplotlib.colors.FuncNorm'>, 'LogNorm': <class 'matplotlib.colors.LogNorm'>, 'NoNorm': <class 'matplotlib.colors.NoNorm'>, 'Normalize': <class 'matplotlib.colors.Normalize'>, 'PowerNorm': <class 'matplotlib.colors.PowerNorm'>, 'SymLogNorm': <class 'matplotlib.colors.SymLogNorm'>, 'TwoSlopeNorm': <class 'matplotlib.colors.TwoSlopeNorm'>}

	matplotlib color normalizations supported by the ColorManager.
See the matplotlib.colors [https://matplotlib.org/stable/api/colors_api.html#module-matplotlib.colors] module for more information.

	
class ColorManager(*, cmap: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]]] = None, norm: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]]] = None, labels: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, vmin: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, vmax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, discretized: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Custom color manager which provides an interface to the
matplotlib.colors [https://matplotlib.org/stable/api/colors_api.html#module-matplotlib.colors] module and aims to simplify working with
colormaps, colorbars, and different normalizations.

	
_NORMS_NOT_SUPPORTING_VMIN_VMAX: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('BoundaryNorm', 'CenteredNorm')

	Names of norms that do not support getting passed the vmin and
vmax arguments.

	
_POSSIBLE_CMAP_KWARGS: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]] = ('name', 'colors', 'segmentdata', 'bad', 'under', 'over', 'reversed', 'N', 'gamma', 'placeholder_color', 'continuous', 'from_values')

	Keyword arguments that are used by matplotlib or the ColorManager to
construct colormaps. If using the implicit syntax for defining labels and
colormap values, these can not be used for labels.

	
_SNS_COLOR_PALETTE_PREFIX: str [https://docs.python.org/3/library/stdtypes.html#str] = 'color_palette::'

	If a colormap name starts with this string, will use
seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette] to generate the colormap

	
_SNS_DIVERGING_PALETTE_PREFIX: str [https://docs.python.org/3/library/stdtypes.html#str] = 'diverging::'

	If a colormap name starts with this string, will use
seaborn.diverging_palette() [https://seaborn.pydata.org/generated/seaborn.diverging_palette.html#seaborn.diverging_palette] to generate the colormap, parsing the
remaining parts of the name into positional and keyword arguments.

	
__init__(*, cmap: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]]] = None, norm: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]]] = None, labels: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]]] = None, vmin: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, vmax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]] = None, discretized: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Initializes a ColorManager by building the colormap,
the norm, and the colorbar labels.

Refer to the dedicated documentation page for
examples and integration instructions.

	Parameters

	
	cmap (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list], Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]], optional) – The colormap specification.
If this is not already a matplotlib.colors.Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]
instance, it will be parsed into a dict-like specification,
which has the options as shown below.

	If cmap is a string, it is turned into
dict(name=cmap).

	If cmap is a list (or tuple), it will be converted to
dict(from_values=cmap), creating a segmented colormap.
See below for more information.

In dict form, the following arguments are available:

	name (str, optional):
	Name of a registered matplotlib colormap or None to use a
default. For available colormap names, see
here [https://matplotlib.org/stable/gallery/color/colormap_reference.html].

Also supports seaborn colormaps. If the name starts
with the _SNS_COLOR_PALETTE_PREFIX string,
seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette] is used to generate the
colormap.
If starting with _SNS_DIVERGING_PALETTE_PREFIX,
seaborn.diverging_palette() [https://seaborn.pydata.org/generated/seaborn.diverging_palette.html#seaborn.diverging_palette] is invoked, using
argument specified as part of the name.

This opens many possibilities, as shown in the
seaborn documentation [https://seaborn.pydata.org/tutorial/color_palettes.html].
For example:

color_palette::YlOrBr
color_palette::icefire
color_palette::icefire_r # reversed
color_palette::light:b # white -> blue
color_palette::dark:b # black -> blue
color_palette::light:#69d # custom color
color_palette::light:#69d_r # ... reversed
color_palette::dark:salmon_r # named, reversed
color_palette::ch:s=-.2,r=.6 # cubehelix

diverging::220,20
diverging::145,300,s=60
diverging::250, 30, l=65, center=dark

Here, the ch:<key>=<val>,<key>=<val> syntax is used to
create a seaborn.cubehelix_palette() [https://seaborn.pydata.org/generated/seaborn.cubehelix_palette.html#seaborn.cubehelix_palette].
The same <arg>,<arg>,<key>=<val>,<key>=<val> syntax is
used for the diverging palette.

Note

When specifying these via YAML, make sure to put the
string into single or double quotes to avoid it being
interpreted as a YAML mapping.

	from_values (Union[dict, list], optional):
	Dict of colors keyed by bin-specifier. If given, name
is ignored and a discrete colormap is created from the list
of specified colors. The norm is then set to
matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm].

The bins can be specified either by bin-centers (Scalar) or
by bin-intervals (2-tuples). For the former, the deduced
bin-edges are assumed halfway between the bin-centers. For
the latter, the given intervals must be pairwise connected.
In both cases, the bins must monotonically increase.

If a list of colors is passed they are automatically
assigned to the bin-centers [0, 1, 2, ...], potentially
shifted depending on vmin and vmax. Inferring
these values is done in _infer_pos_map().

Alternatively, a continuous, linearly interpolated colormap
can be generated by setting the continuous flag, see
below. This will construct a
LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap].
In such a case, keys in from_values can only be scalar,
bin intervals cannot be specified.

	continuous (bool, optional):
	If True, will interpret the from_values data as
specifying points between which a linear interpolation is
carried out. Will create a
LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap].

	under (Union[str, dict], optional):
	Passed on to
set_under() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_under]

	over (Union[str, dict], optional):
	Passed on to
set_over() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_over]

	bad (Union[str, dict], optional):
	Passed on to
set_bad() [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap.set_bad]

	placeholder_color (str, optional):
	None values in from_values are replaced with this
color (default: white).

	reversed (bool, optional):
	If True, will reverse the colormap.

	labels_and_colors (dict, optional):
	This is a shorthand syntax for specifying colorbar labels
and colors at the same time.
Keys refer to labels, values to colors.
The label positions and bounds are inferred using
_infer_pos_map() and are affected by vmin and
vmax. These may also be given implicitly via
**kwargs (see below), but not at the same time!

Effectively, the mapping is unpacked into two parts:
The keys are used to specify the values of the labels
dict (on the top-level); the values are used to specify
the values of the cmap.from_values dict (see above).
The keys are inferred from the length of the sequence and
vmin and vmax, expecting to map to an integer
data positions.

Example:

cmap:
 empty: darkkhaki # -> 0
 susceptible: forestgreen # -> 1
 exposed: darkorange # ...
 infected: firebrick
 recovered: slategray
 deceased: black
 source: maroon
 inert: moccasin # -> 7

 # can still set extremes here (should not appear)
 under: red
 over: red

	**kwargs (optional):
	Depending on the argument names, these are either passed
to colormap instantiation or are used to specify the
labels_and_colors mapping. For the latter, labels may
not be named after arguments that are relevant for
colormap initialization
(_POSSIBLE_CMAP_KWARGS).

	norm (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict], Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]], optional) – The norm that is applied for the color-mapping. If it is a
string, the matching norm in matplotlib.colors [https://matplotlib.org/stable/api/colors_api.html#module-matplotlib.colors]
is created with default values.
If it is a dict, the name entry specifies the norm and all
further entries are passed to its constructor.
Overwritten if a discrete colormap is specified via
cmap.from_values.

	labels (Union[List[str [https://docs.python.org/3/library/stdtypes.html#str]], Dict[float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – Colorbar
tick-labels keyed by tick position. If a list of labels is
passed they are automatically assigned to the positions
[0, 1, 2, ...] (if no vmin and vmax are given) or
[vmin, vmin + 1, ..., vmax] otherwise.

	vmin (float [https://docs.python.org/3/library/functions.html#float], optional) – The lower bound of the color-mapping.
Not passed to matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm], which
does not support it.
If given, this argument in combination with vmax needs to
define an integer range that has the same number of values
as needed for a colormap constructed from from_values or
via the label -> color mapping.
If discretized is set, this value will be set to
ceil(vmin) - 0.5.

	vmax (float [https://docs.python.org/3/library/functions.html#float], optional) – The upper bound of the color-mapping.
Not passed to matplotlib.colors.BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm], which
does not support it.
If given, this argument in combination with vmin needs to
define an integer range that has the same number of values
as needed for a colormap constructed from from_values or
via the label -> color mapping.
If discretized is set, this value will be set to
floor(vmax) + 0.5.

	discretized (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, assumes that the data this
colormap is to represent only has integer values and makes a
number of changes to improve the overall visualization.
For instance, if True, the vmin and vmax values
will be set to the appropriate half-integer such that tick
positions are centered within the corresponding range.
If None (default), will do this automatically if a colormap
is constructed via from_values or via label -> color
mapping.

	
property cmap: Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]

	Returns the constructed colormap object

	
property norm: Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]

	Returns the constructed normalization object

	
property labels: dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A dict or list of colorbar labels

	
property vmin: Optional[float [https://docs.python.org/3/library/functions.html#float]]

	The vmin value of the colormap and norm

	
property vmax: Optional[float [https://docs.python.org/3/library/functions.html#float]]

	The vmax value of the colormap and norm

	
map_to_color(X: Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]])

	Maps the input data to color(s) by applying both norm and colormap.

	Parameters

	X (Union[float [https://docs.python.org/3/library/functions.html#float], ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – Data value(s) to convert to RGBA.

	Returns

	Tuple of RGBA values if X is scalar, otherwise an array of RGBA
values with a shape of X.shape + (4,).

	
create_cbar(mappable: ScalarMappable [https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ScalarMappable], *, fig: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]] = None, ax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]] = None, label: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, label_kwargs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, tick_params: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, extend: str [https://docs.python.org/3/library/stdtypes.html#str] = 'auto', **cbar_kwargs) → Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar]

	Creates a colorbar of a given mappable

	Parameters

	
	mappable (ScalarMappable [https://matplotlib.org/stable/api/cm_api.html#matplotlib.cm.ScalarMappable]) – The mappable that is to be
described by the colorbar.

	fig (Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure], optional) – The figure; if not
given, will use the current figure as determined by
gcf() [https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf].

	ax (Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes], optional) – The axes; if not given, will
use the one given by matplotlib.figure.Figure.gca() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.gca].

	label (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A label for the colorbar

	label_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional parameters passed to
matplotlib.colorbar.Colorbar.set_label() [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar.set_label]

	tick_params (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Set colorbar tick parameters via the
matplotlib.axes.Axes.tick_params() [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.tick_params.html#matplotlib.axes.Axes.tick_params] method of the
matplotlib.colorbar.Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar] axes.

	extend (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Whether to extend the colorbar axis to show
the under and over values. If auto (default), will
inspect whether the colormap has these values set and decide
accordingly. Can also be set manually, possible values being
neither, min, max, and both.

	**cbar_kwargs – Passed on to
matplotlib.figure.Figure.colorbar() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.colorbar]

	Returns

	The created colorbar object

	Return type

	Colorbar [https://matplotlib.org/stable/api/colorbar_api.html#matplotlib.colorbar.Colorbar]

	
_parse_cmap_kwargs(*, _labels: Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, continuous: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, from_values: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, placeholder_color: str [https://docs.python.org/3/library/stdtypes.html#str] = 'w', labels_and_colors: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, **kwargs) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict], dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
	Parameters

	
	_labels (Union[list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – The (top-level!) labels argument.
While not being parsed here, it is needed for informative error
messages.

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the colormap

	continuous (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to create a continuous or a
discrete colormap.

	from_values (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], list [https://docs.python.org/3/library/stdtypes.html#list]], optional) – The values from which
to create the colormap. Keys are either given explicitly or
inferred using _infer_pos_map().

	placeholder_color (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Color used when a value in
from_values did not specify a value.

	**kwargs – combined keyword arguments for the colormap creation and
shorthand entries for label -> color mapping.

	
_parse_norm_kwargs(*, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **kws) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses the norm arguments into a uniform shape

	
_parse_cbar_labels(labels: Union [https://docs.python.org/3/library/typing.html#typing.Union][None [https://docs.python.org/3/library/constants.html#None], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Parses the labels argument into a uniform shape

	
_infer_pos_map(seq: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Any [https://docs.python.org/3/library/typing.html#typing.Any]], *, vmin: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, vmax: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][float [https://docs.python.org/3/library/functions.html#float], Any [https://docs.python.org/3/library/typing.html#typing.Any]]

	Given a sequence, infers a mapping position -> value, where the
positions are numeric values and the values of the resulting dict
are the ones from the given sequence.

If vmin and vmax are given, they are used to help with
inferring the values.
Note that these arguments need to be explicitly passed.

	
_parse_boundaries(bins: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence], *, set_vmin_vmax: bool [https://docs.python.org/3/library/functions.html#bool] = False, discretized: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float]]

	Parses the boundaries for the
BoundaryNorm [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.BoundaryNorm.html#matplotlib.colors.BoundaryNorm].

	Parameters

	
	bins (Sequence) – Either monotonically increasing sequence of bin
centers or sequence of connected intervals (2-tuples).

	set_vmin_vmax (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description

	discretized (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Description

	Returns

	Monotonically increasing boundaries.

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float]]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On disconnected intervals or decreasing boundaries.

	
_create_cmap(*, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, colors: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]] = None, segmentdata: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, bad: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, under: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, over: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, reversed: bool [https://docs.python.org/3/library/functions.html#bool] = False, N: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, gamma: float [https://docs.python.org/3/library/functions.html#float] = 1.0) → Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]

	Creates a colormap.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The colormap name. Can either be the name of
a registered colormap or ListedColormap. None means
that the default value from the RC parameters (image.cmap)
is used.
If the name starts with the
_SNS_COLOR_PALETTE_PREFIX, the colormap can be
created by seaborn.color_palette() [https://seaborn.pydata.org/generated/seaborn.color_palette.html#seaborn.color_palette].
See the seaborn docs [https://seaborn.pydata.org/tutorial/color_palettes.html]
for available options.

	colors (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Passed on to
matplotlib.colors.ListedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.ListedColormap.html#matplotlib.colors.ListedColormap], ignored otherwise

	segmentdata (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Description

	bad (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Set color to be used for masked
values.

	under (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Set the color for low
out-of-range values when norm.clip = False.

	over (Union[str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional) – Set the color for high
out-of-range values when norm.clip = False.

	reversed (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Reverses the colormap

	N (int [https://docs.python.org/3/library/functions.html#int], optional) – Passed on to
matplotlib.colors.ListedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.ListedColormap.html#matplotlib.colors.ListedColormap] or
matplotlib.colors.LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap],
ignored otherwise.

	gamma (float [https://docs.python.org/3/library/functions.html#float], optional) – Passed on to
matplotlib.colors.LinearSegmentedColormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap]

	Returns

	The created colormap.

	Return type

	Colormap [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Colormap.html#matplotlib.colors.Colormap]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid colormap name.

	
_create_norm(name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, **norm_kwargs) → Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]

	Creates a norm.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The norm name. Must name a
matplotlib.colors.Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize] instance (see
matplotlib.colors [https://matplotlib.org/api/colors_api.html]).
None means that the base class, Normalize, is used.

	**norm_kwargs – Passed on to the constructor of the norm.

	Returns

	The created norm.

	Return type

	Normalize [https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid norm specification.

	
parse_cmap_and_norm_kwargs(*, _key_map: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, use_color_manager: bool [https://docs.python.org/3/library/functions.html#bool] = True, **kws) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	A function that parses colormap-related keyword arguments and passes
them through the ColorManager, making its functionality
available in places that would otherwise not be able to use the expanded
syntax of the color manager.

Note

The resulting dict will only have the cmap and cbar kwargs
(or their mapped equivalents) set from the color manager, all other
arguments are simply passed through.

In particular, this means that the labels feature of the color
manager is not supported, because this function has no ability to
set the colorbar.

	Parameters

	
	_key_map (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If custom keyword argument keys are
expected as output, e.g. hue_cmap instead of cmap, set the
values to these custom names: {"cmap": "hue_cmap"}.
Expected keys are cmap, norm, vmin, vmax. If not
set or partially not set, will use defaults.

	use_color_manager (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If false, will simply pass through

	**kws – Keyword arguments to parse

	Returns

	The updated keyword arguments with cmap and norm (or
equivalent keys according to _key_map).

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

dantro.plot.utils.mpl module

Matplotlib utilities which are used in
PlotHelper or other places.

	
class figure_leak_prevention(*, close_current_fig_on_raise: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context manager that aims to prevent superfluous matplotlib figures
persisting beyond the context. Such figure objects can aggregate and start
memory issues or even representation errors.

Specifically, it does the following:

	When entering, stores all current figure numbers

	When exiting regularly, all figures that were opened within the
context are closed, except the currently selected figure.

	When exiting with an exception, the behaviour is the same, unless the
close_current_fig_on_raise is set, in which case the currently
selected figure is not excluded from closing.

	
__init__(*, close_current_fig_on_raise: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Initialize the context manager

	Parameters

	close_current_fig_on_raise (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the
currently selected figure will not be exempt from the
figure closure in case an exception occurs. This flag has no
effect when the context is exited without an exception.

	
__enter__()

	Upon entering, store all currently open figure numbers

	
__exit__(exc_type: type [https://docs.python.org/3/library/functions.html#type], *args) → None [https://docs.python.org/3/library/constants.html#None]

	Iterates over all currently open figures and closes all figures
that were not previously open, except the currently selected figure.

If an exception is detected, i.e. exc_type` is **not** None, the
current figure is only closed if the context manager was entered with
the ``close_current_fig_on_raise flag set.

	
calculate_space_needed_hv(fig: Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure], obj, *, spacing_h: float [https://docs.python.org/3/library/functions.html#float] = 0.02, spacing_v: float [https://docs.python.org/3/library/functions.html#float] = 0.02) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	Calculates the horizontal and vertical space needed for an object in
this figure.

Note

This will invoke matplotlib.figure.Figure.draw() [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.draw] two times
and cause resizing of the figure!

	Parameters

	
	fig (Figure [https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure]) – The figure

	obj – The object in that figure to fit

	spacing_h (float [https://docs.python.org/3/library/functions.html#float], optional) – Added to space needed (in inches)

	spacing_v (float [https://docs.python.org/3/library/functions.html#float], optional) – Added to space needed (in inches)

	Returns

	
	the horizontal and vertical space needed to fit
	into the figure (in inches).

	Return type

	Tuple[float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]]

	
remove_duplicate_handles_labels(h: list [https://docs.python.org/3/library/stdtypes.html#list], l: list [https://docs.python.org/3/library/stdtypes.html#list]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Returns new aligned lists of handles and labels from which duplicates
(identified by label) are removed.

This maintains the order and association by keeping track of seen items;
see https://stackoverflow.com/a/480227/1827608 for more information.

	Parameters

	
	h (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of artist handles

	l (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of labels

	Returns

	handles and labels

	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	
gather_handles_labels(mpo) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]

	Uses .findobj to search a figure or axis for legend objects and
returns lists of handles and (string) labels.

	
prepare_legend_args(h, l, *, custom_labels: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], hiding_threshold: int [https://docs.python.org/3/library/functions.html#int]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list], bool [https://docs.python.org/3/library/functions.html#bool]]

	A utility function that allows setting custom legend handles and
implements some logic to hide all handles if there are too many.

	
set_tick_locators_or_formatters(*, ax: Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes], kind: str [https://docs.python.org/3/library/stdtypes.html#str], x: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, y: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, z: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	Sets the tick locators or formatters.
Look at the PlotHelper methods
_hlpr_set_tick_{locators/formatters} for more information.

Names are looked up in the matplotlib.ticker [https://matplotlib.org/stable/api/ticker_api.html#module-matplotlib.ticker] and
matplotlib.dates [https://matplotlib.org/stable/api/dates_api.html#module-matplotlib.dates] modules.

	Parameters

	
	ax (Axes [https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.html#matplotlib.axes.Axes]) – The axes object

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Whether to set a locator or a formatter.

	x (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The config for the x-axis tick locator/formatter

	y (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The config for the y-axis tick locator/formatter

	z (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – The config for the z-axis tick locator/formatter

dantro.plot.utils.plot_func module

Implements utilities that revolve around the plotting function which is then
invoked by the plot creators:

	a decorator to declare a function as a plot function

	the tools to resolve a plotting function from a module or file

	
class PlotFuncResolver(*, base_module_file_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, base_pkg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Takes care of resolving a plot function

	
BASE_PKG: str [https://docs.python.org/3/library/stdtypes.html#str] = 'dantro.plot.funcs'

	The default module string to use for relative module imports, where this
module becomes the base package. Evaluated in __init__().

	
__init__(*, base_module_file_dir: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, base_pkg: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Set up the plot function resolver.

	Parameters

	
	base_module_file_dir (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, module_file
arguments to resolve() that are relative paths will
be seen relative to this directory. Needs to be an absolute
directory path and supports ~ expansion.

	base_pkg (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – If given, use this base package instead
for relative module imports instead of BASE_PKG.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If base_module_file_dir was not absolute

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If base_module_file_dir is missing or not a
 directory.

	
resolve(*, plot_func: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]], module: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, module_file: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Resolve and return the plot function callable

	Parameters

	
	plot_func (Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]) – The name or module string of the
plot function as it can be imported from module. If this is
a callable will directly return that callable.

	module (str [https://docs.python.org/3/library/stdtypes.html#str]) – If plot_func was the name of the plot
function, this needs to be the name of the module to import
that name from.

	module_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the file to load and look for
the plot_func in. If base_module_file_dir is given
during initialization, this can also be a path relative to that
directory.

	Returns

	The resolved plot function

	Return type

	Callable

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – On bad argument types

	
_get_module_from_file(path: str [https://docs.python.org/3/library/stdtypes.html#str], *, base_module_file_dir: str [https://docs.python.org/3/library/stdtypes.html#str])

	Returns the module corresponding to the file at the given path.

This uses import_module_from_file()
to carry out the import.

	
_get_module_via_import(*, module: str [https://docs.python.org/3/library/stdtypes.html#str], base_pkg: str [https://docs.python.org/3/library/stdtypes.html#str])

	Returns the module via import.

Imports module via importlib, allowing relative imports from the
package defined as base package.

	
_attach_attributes(plot_func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable], /, *, module=None, plot_func_modstr: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	Attaches some informational attributes to the plot function.

	
class is_plot_func(*, creator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, creator_type: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]] = None, creator_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, required_dag_tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, compute_only_required_dag_tags: bool [https://docs.python.org/3/library/functions.html#bool] = True, pass_dag_object_along: bool [https://docs.python.org/3/library/functions.html#bool] = False, unpack_dag_results: bool [https://docs.python.org/3/library/functions.html#bool] = False, use_helper: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, helper_defaults: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, supports_animation=False, add_attributes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is a decorator class declaring the decorated function as a
plotting function to use with
BasePlotCreator or derived creators.

Note

This decorator has a set of specializations that make sense only when
using a specific creator type!
For example, the helper-related arguments are only used by
PyPlotCreator and are ignored
without warning otherwise.

	
__init__(*, creator: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, creator_type: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]] = None, creator_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, use_dag: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, required_dag_tags: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, compute_only_required_dag_tags: bool [https://docs.python.org/3/library/functions.html#bool] = True, pass_dag_object_along: bool [https://docs.python.org/3/library/functions.html#bool] = False, unpack_dag_results: bool [https://docs.python.org/3/library/functions.html#bool] = False, use_helper: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, helper_defaults: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, supports_animation=False, add_attributes: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Initialize the decorator.

Note

Some arguments are only evaluated when using a certain creator
type, e.g. PyPlotCreator.

	Parameters

	
	creator (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The creator to use; needs to be registered
with the PlotManager under this name.

	creator_type (type [https://docs.python.org/3/library/functions.html#type], optional) – The type of plot creator to use.
This argument is DEPRECATED, use creator instead.

	creator_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the plot creator to use.
This argument is DEPRECATED, use creator instead.

	use_dag (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the data transformation
framework.

	required_dag_tags (Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – The DAG tags that are
required by the plot function.

	compute_only_required_dag_tags (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to compute
only those DAG tags that are specified as required by the plot
function. This is ignored if no required DAG tags were given
and can be overwritten by the compute_only argument.

	pass_dag_object_along (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to pass on the DAG
object to the plot function

	unpack_dag_results (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to unpack the results
of the DAG computation directly into the plot function instead
of passing it as a dictionary.

	use_helper (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the
PlotHelper with this plot.
Needs PyPlotCreator.
If None, will default to True for supported creators and False
otherwise.

	helper_defaults (Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – Default
configurations for helpers; these are automatically considered
to be enabled. If not dict-like, will assume this is an
absolute path (supporting ~ expansion) to a YAML file and
will load the dict-like configuration from there.
Needs PyPlotCreator.

	supports_animation (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the plot function
supports animation.
Needs PyPlotCreator.

	add_attributes (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional attributes to add to
the plot function.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If helper_defaults was a string but not an absolute
 path.

	
__call__(func: Callable [https://docs.python.org/3/library/typing.html#typing.Callable])

	If there are decorator arguments, __call__() is only called
once, as part of the decoration process and expects as only argument
the function to be decorated.

dantro.proxy package

This modules implements data proxies as specializations of the
dantro.base.BaseDataProxy.

Submodules

dantro.proxy.hdf5 module

This module implements a dantro.base.BaseDataProxy
specialization for HDF5 data.

	
class Hdf5DataProxy(obj: Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset], *, resolve_as_dask: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Bases: dantro.base.BaseDataProxy

The Hdf5DataProxy is a placeholder for a h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset].

It saves the filename and dataset name needed to later load the dataset.
Additionaly, it caches some values that give information on the shape and
dtype of the dataset, thus further delaying the load to the time the
actual data is required.

Depending on the type that this proxy is resolved as via the
resolve() method, the corresponding h5py.File [https://docs.h5py.org/en/latest/high/file.html#h5py.File] object
needs to stay open and in memory; it is closed upon garbage-collection of
this object.

	
__init__(obj: Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset], *, resolve_as_dask: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Initializes a proxy object for a h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset] object.

	Parameters

	
	obj (Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset]) – The dataset object to be proxy for

	resolve_as_dask (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to resolve the dataset
object as a delayed dask.array.Array [https://docs.dask.org/en/stable/generated/dask.array.Array.html#dask.array.Array] object, using
an h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset] to initialize it and passing over
chunk information.

	
resolve(*, astype: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][type [https://docs.python.org/3/library/functions.html#type]] = None)

	Resolve the data of this proxy by opening the hdf5 file and loading
the dataset into a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or a type specified by the
astype argument.

	Parameters

	astype (type [https://docs.python.org/3/library/functions.html#type], optional) – As which type to return the data from the
dataset this object is proxy for.
If None, will return as numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].
For h5py.Dataset [https://docs.h5py.org/en/latest/high/dataset.html#h5py.Dataset], the h5py.File [https://docs.h5py.org/en/latest/high/file.html#h5py.File] object
stays in memory until the proxy is deleted.
Note that if resolve_as_dask was specified during proxy
initialization, the data will be loaded as
dask.array.Array [https://docs.dask.org/en/stable/generated/dask.array.Array.html#dask.array.Array] only if astype is not
specified in this call!

	Returns

	the resolved data.

	Return type

	type specified by astype

	
_open_h5file() → File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]

	Opens the associated HDF5 file and stores it in _h5files in
order to keep it in scope. These file objects are only closed upon
deletion of this proxy object!

	Returns

	The newly opened HDF5 file

	Return type

	File [https://docs.h5py.org/en/latest/high/file.html#h5py.File]

	
__del__()

	Make sure all potentially still open h5py.File objects are closed

	
property shape

	The cached shape of the dataset, accessible without resolving

	
property dtype

	The cached dtype of the dataset, accessible without resolving

	
property ndim

	The cached ndim of the dataset, accessible without resolving

	
property size

	The cached size of the dataset, accessible without resolving

	
property chunks

	The cached chunks of the dataset, accessible without resolving

	
_abc_impl = <_abc._abc_data object>

	

	
_tags: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = ()

	Associated tags.

These are empty by default and may also be overwritten in the object.

	
property classname: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns this proxy’s class name

	
property tags: Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	The tags describing this proxy object

dantro.utils package

This submodule contains some utility classes and functions

Submodules

dantro.utils.coords module

This module provides coordinate parsing capabilities.

	
TDims

	A dimension sequence type

alias of Tuple[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
TCoord

	A single coordinate value type

alias of TypeVar(‘TCoord’, int, float, str, Hashable)

	
TCoords

	A sequence of coordinate values

alias of Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]

	
TCoordsDict

	Several coordinates, bundled into a map of dimension name to coordinates

alias of Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	
extract_dim_names(attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict], *, ndim: int [https://docs.python.org/3/library/functions.html#int], attr_name: str [https://docs.python.org/3/library/stdtypes.html#str], attr_prefix: str [https://docs.python.org/3/library/stdtypes.html#str]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Extract dimension names from the given attributes.

	This can be done in two ways:
	
	A list of dimension names was specified in an attribute with the
name specified by the attr_name argument

	One by one via attributes that start with the string prefix defined
in attr_prefix. This can be used if not all dimension names are
available. Note that this will also not be used if option 1 is
used!

	Parameters

	
	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The dict-like object to read attributes from

	obj_logstr (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that is given as context in log and error
messages, ideally describing the object these attributes belong to

	ndim (int [https://docs.python.org/3/library/functions.html#int]) – The expected rank of the dimension names

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to look for in attrs that would give a
sequence of the dimension names.

	attr_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The prefix to look for in the keys of the attrs
that would specify the name of a single dimension.

	Returns

	The dimension names or None as placeholder

	Return type

	Tuple[Union[str [https://docs.python.org/3/library/stdtypes.html#str], None]]

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – Attribute found at attr_name was a string, was not
 iterable or was not a sequence of strings

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Length mismatch of attribute found at attr_name
 and the data.

	
_coords_start_and_step(cargs, *, data_shape: tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dim_num: int [https://docs.python.org/3/library/functions.html#int], **__) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]]

	Interpret as integer start and step of range expression and use the
length of the data dimension as number of steps

	
_coords_trivial(_, *, data_shape: tuple [https://docs.python.org/3/library/stdtypes.html#tuple], dim_num: int [https://docs.python.org/3/library/functions.html#int], **__) → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]]

	Returns trivial coordinates for the given dimension by creating a
range iterator from the selected data shape.

	
_coords_scalar(coord, **__) → List [https://docs.python.org/3/library/typing.html#typing.List][dantro.utils.coords.TCoord]

	Returns a single, scalar coordinate, i.e.: list of length 1

	
_coords_linked(cargs, *, link_anchor_obj, **__) → Link

	Creates a Link object which is to be used for coordinates

	
extract_coords_from_attrs(obj: Union [https://docs.python.org/3/library/typing.html#typing.Union][AbstractDataContainer, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]], *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], strict: bool [https://docs.python.org/3/library/functions.html#bool], coords_attr_prefix: str [https://docs.python.org/3/library/stdtypes.html#str], default_mode: str [https://docs.python.org/3/library/stdtypes.html#str], mode_attr_prefix: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, attrs: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Extract coordinates from the given object’s attributes.

This is done by iterating over the given dims and then looking
for attributes that are prefixed with coords_attr_prefix and ending in
the name of the dimension, e.g. attributes like coords__time.

The value of that attribute is then evaluated according to a so-called
attribute mode. By default, the mode set by default_mode is used,
but it can be set explicitly for each dimension by the mode_attr_prefix
parameter.

The resulting number of coordinates for a dimension always need to match
the length of that dimension. However, the corresponding error can only be
raised once this information is applied.

	Parameters

	
	obj (Union[AbstractDataContainer, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]]) – The object to
retrieve the attributes from (via the attrs attribute). If the
attrs argument is given, will use those instead.
It is furthermore expected that this object specifies the shape of
the numerical data the coordinates are to be generated for by
providing a shape property. This is possible with
NumpyDataContainer and
derived classes.

	dims (Tuple[Union[str [https://docs.python.org/3/library/stdtypes.html#str], None]]) – Sequence of dimension names; this
may also contain None’s, which are ignored for coordinates.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use strict checking, where no additional
coordinate-specifying attributes are allowed.

	coords_attr_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute name prefix for coordinate
specifications

	default_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default coordinate extraction mode. Available
modes:

	values: the explicit values (iterable) to use for coordinates

	range: range arguments

	arange: np.arange arguments

	linspace: np.linspace arguments

	logspace: np.logspace arguments

	trivial: The trivial indices. This does not require a value
for the coordinate argument.

	scalar: makes sure only a single coordinate is provided

	start_and_step: the start and step values of an integer range
expression; the stop value is deduced by looking at the length of
the corresponding dimension. This is then passed to the python
range function as (start, stop, step)

	linked: Load the coordinates from a linked object within the
tree; this works only if link_anchor_obj is part of a data
tree at the point of coordinate resolution!

	mode_attr_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The attribute name prefix that can
be used to specify a non-default extraction mode. If not given, the
default mode will be used.

	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, these attributes will be used instead
of attempting to extract attributes from obj.

	Returns

	The (dim_name -> coords) mapping

	Return type

	TCoordsDict

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – On invalid coordinates mode or (with strict attribute
 checking) on superfluous coordinate-setting attributes.

	
extract_coords_from_name(obj: AbstractDataContainer, *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]], separator: str [https://docs.python.org/3/library/stdtypes.html#str], attempt_conversion: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Given a container or group, extract the coordinates from its name.

The name of the object may be a separator-separated string, where each
segment contains the coordinate value for one dimension.

This function assumes that the coordinates for each dimension are scalar.
Thus, the values of the returned dict are sequences of length 1.

	Parameters

	
	obj (AbstractDataContainer) – The object to get the coordinates of by
inspecting its name.

	dims (TDims) – The dimension names corresponding to the coordinates that
are expected to be found in the object’s name.

	separator (str [https://docs.python.org/3/library/stdtypes.html#str]) – The separtor to apply on the name.

	attempt_conversion (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to attempt conversion of
the string value to a numerical type.

	Returns

	
	The coordinate dict, i.e. a mapping from the external
	dimension names to the coordinate values. In this case, there can
only a single value for each dimension!

	Return type

	TCoordsDict

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Raised upon failure to extract external coordinates:
 On ext_dims evaluating to False, f coordinates were missing for
 any of the external dimensions, if the number of coordinates
 extracted from the name did not match the number of external
 dimensions, if any of the strings extracted from the object’s name
 were empty.

	
extract_coords_from_data(obj: AbstractDataContainer, *, dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Tries to extract the coordinates from the data of the given container
or group. For that purpose, the obj needs to support the coords
property.

	Parameters

	
	obj (AbstractDataContainer) – The object that holds the data from which
the coordinates are to be extracted.

	dims (TDims) – The sequence of dimension names for which the coordinates
are to be extracted.

	
extract_coords(obj: AbstractDataContainer, *, mode: str [https://docs.python.org/3/library/stdtypes.html#str], dims: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]], use_cache: bool [https://docs.python.org/3/library/functions.html#bool] = False, cache_prefix: str [https://docs.python.org/3/library/stdtypes.html#str] = '__coords_cache_', **kwargs) → Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][dantro.utils.coords.TCoord]]

	Wrapper around the more specific coordinate extraction functions.

Note

This function does not support the extraction of non-dimension
coordinates.

	Parameters

	
	obj (AbstractDataContainer) – The object from which to extract the
coordinates.

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Which mode to use for extraction. Can be:

	name: Use the name of the object

	attrs: Use the attributes of the object

	data: Use the data of the object

	dims (TDims) – The dimensions for which the attributes are to be
extracted. All dimension names given here are expected to be found.

	use_cache (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use the object’s attributes to
write an extracted value to the cache and read it, if available.

	cache_prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The prefix to use for writing the cache
entries to the object attributes. Will suffix this with dims
and coords and store the respective data there.

	**kwargs – Passed on to the actual coordinates extraction method.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If use_cache is set

dantro.utils.link module

Implements the Link class and specializations
for it.

	
class Link(*, anchor: BaseDataContainer, rel_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: dantro.mixins.general.ForwardAttrsMixin

A link is a connection between two objects in the data tree, i.e. a
data group and a data container.

It has a source object that it is coupled to and a relative path from that
object to the target object.

Whenever attribute access occurs, an object of this class will resolve the
linked object (if not already cached) and then forward the attribute call
to that object.

Note

The references are internally stored as weak references
weakref.ref [https://docs.python.org/3/library/weakref.html#weakref.ref]; note that this limits the picklability of
objects of this class.

See the weakref docs [https://docs.python.org/3/library/weakref.html#weakref.ref]
for more information.

	
_REF_TYPE

	The referencing type for linking, here using weak references

alias of weakref.ReferenceType

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'target_object'

	Forward attributes to the target object property (…but see
_forward_attr_get_forwarding_target() method for more information
on why this is done.

	
__init__(*, anchor: BaseDataContainer, rel_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize a link from an anchor and a relative path to a target

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the
anchor_weakref and target_rel_path properties.

If types do not match exactly, NotImplemented is returned,
thus referring the comparison to the other side of the ==.

	
property target_weakref: weakref.ReferenceType

	Resolve the target and return the weak reference to it

	Returns

	A weak reference to the target object

	Return type

	ref [https://docs.python.org/3/library/weakref.html#weakref.ref]

	
property target_object: BaseDataContainer

	Return a (non-weak) reference to the actual target object

	
property anchor_weakref: weakref.ReferenceType

	Resolve the weak reference to the anchor and return it, i.e.
return a reference to the actual anchor object.

	Returns

	The weak reference to the anchor object

	Return type

	ref [https://docs.python.org/3/library/weakref.html#weakref.ref]

	
property anchor_object: BaseDataContainer

	Return a (non-weak) reference to the anchor object

	
property target_rel_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the relative path to the target

	
__resolve_target_ref() → None [https://docs.python.org/3/library/constants.html#None]

	Resolves the weak reference to the target object and caches it

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to, i.e.
the resolved target object. This invokes resolution of the target and
caching of the corresponding weakref.ref [https://docs.python.org/3/library/weakref.html#weakref.ref], but the returned
(strong) reference will not be cached.

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
class _strongref(obj: Any [https://docs.python.org/3/library/typing.html#typing.Any])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Emulates part of the weakref.ref [https://docs.python.org/3/library/weakref.html#weakref.ref] interface but uses regular
references instead of weak references.

This is used internally by StrongLink and
improves picklability.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Two strong references are equal if and only if they point to the
identical object.

	
class StrongLink(*, anchor: BaseDataContainer, rel_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Bases: dantro.utils.link.Link

Like a Link, but not using regular
(non-weak) references instead of weak references, which improves the
pickleability of these objects.

	
FORWARD_ATTR_EXCLUDE: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = ()

	Attributes to not forward. Evaluated after FORWARD_ATTR_ONLY

	
FORWARD_ATTR_ONLY: Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]] = None

	If set, the only attributes to be forwarded

	
FORWARD_ATTR_TO: str [https://docs.python.org/3/library/stdtypes.html#str] = 'target_object'

	Forward attributes to the target object property (…but see
_forward_attr_get_forwarding_target() method for more information
on why this is done.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	Evaluates equality by making the following comparisons: identity,
strict type equality, and finally: equality of the
anchor_weakref and target_rel_path properties.

If types do not match exactly, NotImplemented is returned,
thus referring the comparison to the other side of the ==.

	
__getattr__(attr_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Forward attributes that were not available in this class to some
other attribute of the group or container.

	Parameters

	attr_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute that was tried to be
accessed but was not available in self.

	Returns

	The attribute attr_name of
getattr(self, self.FORWARD_ATTR_TO)

	
__getstate__() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns the object’s __dict__

	
__init__(*, anchor: BaseDataContainer, rel_path: str [https://docs.python.org/3/library/stdtypes.html#str])

	Initialize a link from an anchor and a relative path to a target

	
__setstate__(d: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Sets the object’s __dict__ to the given one

	
_forward_attr_get_forwarding_target()

	Get the object that the attribute call is to be forwarded to, i.e.
the resolved target object. This invokes resolution of the target and
caching of the corresponding weakref.ref [https://docs.python.org/3/library/weakref.html#weakref.ref], but the returned
(strong) reference will not be cached.

	
_forward_attr_post_hook(attr)

	Invoked before attribute forwarding occurs

	
_forward_attr_pre_hook(attr_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Invoked before attribute forwarding occurs

	
property anchor_object: BaseDataContainer

	Return a (non-weak) reference to the anchor object

	
property anchor_weakref: weakref.ReferenceType

	Resolve the weak reference to the anchor and return it, i.e.
return a reference to the actual anchor object.

	Returns

	The weak reference to the anchor object

	Return type

	ref [https://docs.python.org/3/library/weakref.html#weakref.ref]

	
property target_object: BaseDataContainer

	Return a (non-weak) reference to the actual target object

	
property target_rel_path: str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns the relative path to the target

	
property target_weakref: weakref.ReferenceType

	Resolve the target and return the weak reference to it

	Returns

	A weak reference to the target object

	Return type

	ref [https://docs.python.org/3/library/weakref.html#weakref.ref]

	
_REF_TYPE

	alias of dantro.utils.link._strongref

dantro.utils.nx module

networkx-related utility functions

	
ATTR_MAPPER_OP_PREFIX = 'attr_mapper'

	A prefix used for registring attribute mapping data operations

	
ATTR_MAPPER_OP_PREFIX_DAG = 'attr_mapper.dag'

	A prefix used for registring attribute mapping data operations that are
specialized for use in the DAG, e.g. in
dantro.dag.TransformationDAG.generate_nx_graph().

	
keep_node_attributes(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *to_keep)

	Iterates over the given graph object and removes all node attributes
but those in to_keep.

Note

This function works in-place on the given graph object

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph object with the nodes

	*to_keep – Sequence of attribute names to keep

	
keep_edge_attributes(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *to_keep)

	Iterates over the given graph object and removes all edge attributes
but those in to_keep.

Note

This function works in-place on the given graph object

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph object with the edges

	*to_keep – Sequence of attribute names to keep

	
map_attributes(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], kind: str [https://docs.python.org/3/library/stdtypes.html#str], mappers: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], dict [https://docs.python.org/3/library/stdtypes.html#dict]]])

	Maps attributes of nodes or edges (specified by kind).

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – Graph object to map the node or edge attributes of

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a valid graph iterator, e.g. nodes, edges

	mappings (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]]) – The mappings dict.
Will set node attributes that have as their value the result of a
single data operation. The dict values can either be the name of a
registered data operation or a dict that defines an operation and
the corresponding arguments, supporting the
typical DAG syntax.

Note

Note that the operation needs to be part of an extended
dantro operations database. It may not be a
meta-operation and can also not be a sequence of
operations. The operation will always get node’s or edge’s
existing attrs dict as a keyword argument. The return value
of the operation is used as the new attribute value.

	
manipulate_attributes(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *, map_node_attrs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, map_edge_attrs: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]] = None, keep_node_attrs: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = True, keep_edge_attrs: Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]] = True)

	Manipulates the given graph’s edge and/or node attributes

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph the node and edge attributes of which are
to be manipulated

	map_node_attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]], optional) – Sets
the node attributes given by the keys of this dict with those at
the value. If a callable is given, is invoked with the unpacked
dict of node attributes as arguments and writes the return value
to the attribute given by the key.

	map_edge_attrs (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Union[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]], optional) – Sets
the edge attributes given by the keys of this dict with those at
the value. If a callable is given, is invoked with the unpacked
dict of edge attributes as arguments and writes the return value
to the attribute given by the key.

	keep_node_attrs (Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – Which node
attributes to keep, all others are dropped. Set to True to keep
all existing node attributes; for all other values the
keep_node_attributes() function is invoked.

	keep_edge_attrs (Union[bool [https://docs.python.org/3/library/functions.html#bool], Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]], optional) – Which edge
attributes to keep, all others are dropped. Set to True to keep
all existing edge attributes; for all other values the
keep_edge_attributes() function is invoked.

	
export_graph(g: Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph], *, out_path: str [https://docs.python.org/3/library/stdtypes.html#str], manipulate_attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None, **export_specs)

	Takes care of exporting a networkx graph object using one or many of the
nx.write_ methods. See the
networkx documentation [https://networkx.org/documentation/stable/reference/readwrite/]
for available output formats.

This also allows some pre-processing or node and edge attributes using the
manipulate_attributes() function.

Example:

manipulate_attrs: {}

Export formats
dot: true # needs graphviz
graphml:
 file_ext: gml
 # ... further kwargs passed to writer
gml: false

	Parameters

	
	g (Graph [https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph]) – The graph to export

	out_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to export it to; extensions will be dropped and
replaced by the corresponding export format. Add the file_ext
key to a export format specification to set it to some other value.

	manipulate_attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – If given, is passed to
manipulate_attributes() to manipulate the
node and/or edge attributes of a (copy of) the given graph g.

	**export_specs – Keys need to correspond to valid nx.write_*
function names, values are passed on to the write function. There
are two special keys enabled and file_ext that can control
the behaviour of the respective export operation.
Alternatively, values can be a boolean that enables or disables
the writer.

	
copy_from_attr(attr_to_copy_from: str [https://docs.python.org/3/library/stdtypes.html#str], *, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Attribute mapper operation that copies an
attribute by name.

	
set_value(value: Any [https://docs.python.org/3/library/typing.html#typing.Any], *, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict])

	Attribute mapper operation that simply sets
a value, regardless of other attributes.

	
get_operation(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Attribute mapper operation that returns the
transformation’s operation name.
See dantro.dag.Transformation.operation.

Used in Graph representation and visualization.

	
get_meta_operation(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Attribute mapper operation that returns the
transformation’s meta-operation name, if it was added as part of a meta-
operation. Otherwise returns an empty string. This information stems from
the dantro.dag.Transformation.context attribute.

Used in Graph representation and visualization.

	
format_arguments(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict], join_str: str [https://docs.python.org/3/library/stdtypes.html#str] = '\n') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Attribute mapper operation that formats
node arguments in a nice and readable way.

Used in Graph representation and visualization.

	
get_layer(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → int [https://docs.python.org/3/library/functions.html#int]

	Attribute mapper operation that returns the
transformation’s layer value.
See dantro.dag.Transformation.layer.

Used in Graph representation and visualization.

	
get_status(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Attribute mapper operation that returns the
transformation’s status value.
See dantro.dag.Transformation.status.

Used in Graph representation and visualization.

	
get_description(*, attrs: dict [https://docs.python.org/3/library/stdtypes.html#dict], join_str: str [https://docs.python.org/3/library/stdtypes.html#str] = '\n', to_include: list [https://docs.python.org/3/library/stdtypes.html#list] = ('operation', 'meta_operation', 'tag', 'result'), abbreviate_result: int [https://docs.python.org/3/library/functions.html#int] = 12) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Attribute mapper operation that creates a
description string from the transformation.

Used in Graph representation and visualization.

	Parameters

	
	attrs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Node attributes dict

	join_str (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – How to join the individual segments together

	to_include (list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Which segments to include.
Can be 'all' or a sequence of keys referring to individual
segments. Available segments:

	operation

	meta_operation

	tag

	result (if available)

	status (if available)

Note that the order is also given by the order in this list.

dantro.utils.ordereddict module

Definition of an OrderedDict-subclass that maintains the order key values
rather than the insertion order. It can be specialized to use a specific
comparison function for ordering keys.

	
class KeyOrderedDict(*args, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kwds)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

This dict maintains the order of keys not by their insertion but by
their value. It is a re-implementation of collections.OrderedDict, because
subclassing that class is really difficult.

Ordering is maintained by adjusting those methods of OrderedDict that
take care of building and maintaining the doubly-linked list that provides
the ordering. See OrderedDict for details, e.g. the weak-referencing.

In effect, this relates only to __setitem__; all other methods rely on
this to add elements to the mapping.

For comparison, the key callable given at initialisation can be used to
perform a operation on keys, the result of which is used in comparison.
If this is not given, the DEFAULT_KEY_COMPARATOR class variable is
used; note that this needs to be a binary function, where the first
argument is equivalent to self and the second is the actual key to
perform the unary operation on.

	
__num_comparisons = 0

	

	
DEFAULT_KEY_COMPARATOR(k)

	

	
__init__(*args, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kwds)

	Initialize a KeyOrderedDict, which maintains key ordering. If no
custom ordering function is given, orders by simple “smaller than”
comparison.

Apart from that, the interface is the same as for regular dictionaries.

	Parameters

	
	*args – a single sequence of (key, value) pairs to insert

	key (Callable, optional) – The callable used to

	**kwds – Passed on to update method

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – on len(args) > 1

	
_key_comp_lt(k1, k2) → bool [https://docs.python.org/3/library/functions.html#bool]

	The key comparator. Returns true for k1 < k2.

Before comparison, the unary self._key method is invoked on both
keys.

	Parameters

	
	k1 – lhs of comparison

	k2 – rhs of comparison

	Returns

	result of k1 < k2

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Upon failed key comparison

	
__setitem__(key, value, *, dict_setitem=<slot wrapper '__setitem__' of 'dict' objects>, proxy=<built-in function proxy>, Link=<class 'collections._Link'>, start=None)

	Set the item with the provided key to the given value, maintaining
the ordering specified by _key_comp_lt.

If the key is not available, this takes care of finding the right place
to insert the new link in the doubly-linked list.

Unlike the regular __setitem__, this allows specifying a start
element at which to begin the search for an insertion point, which may
greatly speed up insertion. By default, it is attempted to insert
after the last element; if that is not possible, a full search is done.

Warning

This operation does not scale well with out-of-order insertion!

This behavior is inherent to this data structure, where key
ordering has to be maintained during every insertion. While a best
guess is made regarding the insertion points (see above), inserting
elements completely out of order will require a search time that is
proportional to the number of elements for each insertion.

Hint

If you have information about where the element should be stored,
use insert() and
provide the hint_after argument.

	
insert(key, value, *, hint_after=None)

	Inserts a (key, value) pair using hint information to speed up
the search for an insertion point.

If hint information is available, it is highly beneficial to add this

	Parameters

	
	key – The key at which to insert

	value – The value to insert

	hint_after (optional) – A best guess after which key to insert.
The requirement here is that the key compares

	
__find_element_to_insert_after(key, *, start=None) → collections._Link

	Finds the link in the doubly-linked list after which a new element
with the given key may be inserted, i.e. the last element that
compares False when invoking the key comparator.

If inserting an element to the back or the front of the key list, the
complexity of this method is constant. Otherwise, it scales with the
number of already existing elements.

	Parameters

	
	key – The key to find the insertion spot for

	start (None, optional) – A key to use to start looking, if not given
will use the last element as a best guess.

	
property _num_comparisons: int [https://docs.python.org/3/library/functions.html#int]

	Total number of comparisons performed between elements, e.g. when
finding an insertion point

This number is low, if the insertion order is sequential.
For out-of-order insertion, it may become large.

	
__delitem__(key, dict_delitem=<slot wrapper '__delitem__' of 'dict' objects>)

	kod.__delitem__(y) <==> del kod[y]

Deleting an existing item uses self.__map to find the link which gets
removed by updating the links in the predecessor and successor nodes.

	
__iter__()

	kod.__iter__() <==> iter(kod)

Traverse the linked list in order.

	
__reversed__()

	kod.__reversed__() <==> reversed(kod)

Traverse the linked list in reverse order.

	
clear() → None [https://docs.python.org/3/library/constants.html#None]

	Remove all items from this dict

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Get the size of this object

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
__update(other=(), /, **kwds)

	D.update([E,]**F) -> None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
keys()

	Returns a set-like object providing a view on this dict’s keys

	
items()

	Returns a set-like object providing a view on this dict’s items

	
values()

	Returns an object providing a view on this dict’s values

	
__marker = <object object>

	

	
pop(key, default=<object object>)

	Removes the specified key and returns the corresponding value.
If key is not found, default is returned if given, otherwise a
KeyError is raised.

	
setdefault(key, default=None)

	Retrieves a value, otherwise sets that value to a default.
Calls kod.get(k,d), setting kod[k]=d if k not in kod.

	
__reduce__()

	Return state information for pickling

	
copy()

	Returns a shallow copy of kod, maintaining the key comparator

	
classmethod fromkeys(iterable, value=None, *, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None) → KeyOrderedDict

	A call like KOD.fromkeys(S[, v]) returns a new key-ordered
dictionary with keys from S. If not specified, the value defaults
to None.

	Parameters

	
	iterable – The iterable over keys

	value (None, optional) – Default value for the key

	key (Callable, optional) – Passed to the class initializer

	Returns

	The resulting key-ordered dict.

	Return type

	KeyOrderedDict

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	kod.__eq__(y) <==> kod==y: Comparison to another
KeyOrderedDict or OrderedDict is order-sensitive while comparison to a
regular mapping is order-insensitive.

	Parameters

	other – The object to compare to

	Returns

	Whether the two objects can be considered equal.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get(key, default=None, /)

	Return the value for key if key is in the dictionary, else default.

	
popitem()

	Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.

	
class IntOrderedDict(*args, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kwds)

	Bases: dantro.utils.ordereddict.KeyOrderedDict

A KeyOrderedDict specialization
that assumes keys to be castable to integer and using the comparison of
the resulting integer values for maintaining the order

	
DEFAULT_KEY_COMPARATOR(k)

	

	
__delitem__(key, dict_delitem=<slot wrapper '__delitem__' of 'dict' objects>)

	kod.__delitem__(y) <==> del kod[y]

Deleting an existing item uses self.__map to find the link which gets
removed by updating the links in the predecessor and successor nodes.

	
__eq__(other) → bool [https://docs.python.org/3/library/functions.html#bool]

	kod.__eq__(y) <==> kod==y: Comparison to another
KeyOrderedDict or OrderedDict is order-sensitive while comparison to a
regular mapping is order-insensitive.

	Parameters

	other – The object to compare to

	Returns

	Whether the two objects can be considered equal.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
__init__(*args, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kwds)

	Initialize a KeyOrderedDict, which maintains key ordering. If no
custom ordering function is given, orders by simple “smaller than”
comparison.

Apart from that, the interface is the same as for regular dictionaries.

	Parameters

	
	*args – a single sequence of (key, value) pairs to insert

	key (Callable, optional) – The callable used to

	**kwds – Passed on to update method

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – on len(args) > 1

	
__iter__()

	kod.__iter__() <==> iter(kod)

Traverse the linked list in order.

	
__reduce__()

	Return state information for pickling

	
__reversed__()

	kod.__reversed__() <==> reversed(kod)

Traverse the linked list in reverse order.

	
__setitem__(key, value, *, dict_setitem=<slot wrapper '__setitem__' of 'dict' objects>, proxy=<built-in function proxy>, Link=<class 'collections._Link'>, start=None)

	Set the item with the provided key to the given value, maintaining
the ordering specified by _key_comp_lt.

If the key is not available, this takes care of finding the right place
to insert the new link in the doubly-linked list.

Unlike the regular __setitem__, this allows specifying a start
element at which to begin the search for an insertion point, which may
greatly speed up insertion. By default, it is attempted to insert
after the last element; if that is not possible, a full search is done.

Warning

This operation does not scale well with out-of-order insertion!

This behavior is inherent to this data structure, where key
ordering has to be maintained during every insertion. While a best
guess is made regarding the insertion points (see above), inserting
elements completely out of order will require a search time that is
proportional to the number of elements for each insertion.

Hint

If you have information about where the element should be stored,
use insert() and
provide the hint_after argument.

	
__sizeof__() → int [https://docs.python.org/3/library/functions.html#int]

	Get the size of this object

	
_key_comp_lt(k1, k2) → bool [https://docs.python.org/3/library/functions.html#bool]

	The key comparator. Returns true for k1 < k2.

Before comparison, the unary self._key method is invoked on both
keys.

	Parameters

	
	k1 – lhs of comparison

	k2 – rhs of comparison

	Returns

	result of k1 < k2

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Upon failed key comparison

	
property _num_comparisons: int [https://docs.python.org/3/library/functions.html#int]

	Total number of comparisons performed between elements, e.g. when
finding an insertion point

This number is low, if the insertion order is sequential.
For out-of-order insertion, it may become large.

	
clear() → None [https://docs.python.org/3/library/constants.html#None]

	Remove all items from this dict

	
copy()

	Returns a shallow copy of kod, maintaining the key comparator

	
classmethod fromkeys(iterable, value=None, *, key: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None) → KeyOrderedDict

	A call like KOD.fromkeys(S[, v]) returns a new key-ordered
dictionary with keys from S. If not specified, the value defaults
to None.

	Parameters

	
	iterable – The iterable over keys

	value (None, optional) – Default value for the key

	key (Callable, optional) – Passed to the class initializer

	Returns

	The resulting key-ordered dict.

	Return type

	KeyOrderedDict

	
get(key, default=None, /)

	Return the value for key if key is in the dictionary, else default.

	
insert(key, value, *, hint_after=None)

	Inserts a (key, value) pair using hint information to speed up
the search for an insertion point.

If hint information is available, it is highly beneficial to add this

	Parameters

	
	key – The key at which to insert

	value – The value to insert

	hint_after (optional) – A best guess after which key to insert.
The requirement here is that the key compares

	
items()

	Returns a set-like object providing a view on this dict’s items

	
keys()

	Returns a set-like object providing a view on this dict’s keys

	
pop(key, default=<object object>)

	Removes the specified key and returns the corresponding value.
If key is not found, default is returned if given, otherwise a
KeyError is raised.

	
popitem()

	Remove and return a (key, value) pair as a 2-tuple.

Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.

	
setdefault(key, default=None)

	Retrieves a value, otherwise sets that value to a default.
Calls kod.get(k,d), setting kod[k]=d if k not in kod.

	
update([E,]**F) → None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values()

	Returns an object providing a view on this dict’s values

Data Operations Reference

Below, you will find the dantro data operations database that is used in data processing, e.g. to select and transform data during plotting.

These pages may also be of interest:

	General information on data operations

	Troubleshooting

	Missing an operation?

	Why does my operation fail?

	Usage examples (as part of plots)

Background info on operation definition

You may notice that operations are defined in one of two ways:

	As an ad-hoc defined lambda:

	Example: The call operation simply is: lambda c, *a, **k: c(*a, **k)

	As an alias for a callable defined elsewhere:

	Example: The print operation simply links to dantro’s own print_data() function.

This is simply to concur to a uniform interface and, in the case of the lambdas, allow operations that are averse to the kind of object they act on.
Picking up the call example, the first positional argument can be any callable, the data operation does not care which one.

Something similar is the case for operation names starting with a dot (like .mean):
They follow the convention that the first positional argument is the object on which the attribute call is made.
The effect of these operations thus depends on the type of the object that it acts on.

General operations -
"define": lambda d: d,
"pass": lambda d: d,

Functions useful for debugging
"print": print_data,

Control flow functions, e.g. conditionally skipping a plot
"raise_SkipPlot": raise_SkipPlot,

Working on imported modules (useful if other operations don't match)
"from_module": get_from_module,
"import": import_module_or_object,
"call": lambda c, *a, **k: c(*a, **k),
"import_and_call":
 lambda m, n, *a, **k: import_module_or_object(m, n)(*a, **k),

Defining and calling lambdas
"lambda": generate_lambda,
"call_lambda": lambda e, *a, **k: generate_lambda(e)(*a, **k),

Import from packages and call directly
"math.":
 lambda ms, *a, **k: get_from_module(math, name=ms)(*a, **k),
"np.":
 lambda ms, *a, **k: get_from_module(np, name=ms)(*a, **k),
"xr.":
 lambda ms, *a, **k: get_from_module(xr, name=ms)(*a, **k),
"scipy.":
 lambda ms, *a, **k: get_from_module(scipy, name=ms)(*a, **k),
"nx.":
 lambda ms, *a, **k: get_from_module(nx, name=ms)(*a, **k),
"pd.":
 lambda ms, *a, **k: get_from_module(pd, name=ms)(*a, **k),

Some commonly used types
"list": list,
"dict": dict,
"tuple": tuple,
"set": set,

"int": int,
"float": float,
"complex": complex,
"bool": bool,
"str": str,

Item access and manipulation
"[]": lambda d, k: d[k],
"getitem": lambda d, k: d[k],
"setitem": _make_passthrough(lambda d, *a: d.__setitem__(*a)),
"recursive_getitem": recursive_getitem,

Attribute-related
".": getattr,
"getattr": getattr,
"setattr": _make_passthrough(setattr),
".()": lambda d, attr, *a, **k: getattr(d, attr)(*a, **k),
"callattr": lambda d, attr, *a, **k: getattr(d, attr)(*a, **k),

Other common Python builtins
"all": all,
"any": any,
"len": len,
"min": min,
"max": max,
"sum": sum,
"map": map,
"repr": repr,
"sorted": sorted,

Common operations on strings
".format": lambda s, *a, **k: s.format(*a, **k),
".join": lambda s, *a, **k: s.join(*a, **k),
".split": lambda s, *a, **k: s.split(*a, **k),

Numerical operations -
Broadly categorized in how many arguments they accept ...
Unary ...
"neg": operator.neg,
"pos": operator.pos,
"truth": operator.truth,
"invert": operator.invert,

"increment": lambda d: d + 1,
"decrement": lambda d: d - 1,
"count_unique": count_unique,

numpy
".T": lambda d: d.T,
".any": lambda d: d.any(),
".all": lambda d: d.all(),
".dtype": lambda d: d.dtype,
".shape": lambda d: d.shape,
".ndim": lambda d: d.ndim,
".size": lambda d: d.size,
".itemsize": lambda d: d.itemsize,
".nbytes": lambda d: d.nbytes,
".base": lambda d: d.base,
".imag": lambda d: d.imag,
".real": lambda d: d.real,
".nonzero": lambda d: d.nonzero,
".flat": lambda d: d.flat,
".item": lambda d: d.item(),

xarray
".data": lambda d: d.data,
".values": lambda d: d.values,
".name": lambda d: d.name,
".head": lambda d: d.head(),
".tail": lambda d: d.tail(),
".isnull": lambda d: d.isnull(),

logarithms and powers, all numpy-based
"log": np.log,
"log10": np.log10,
"log2": np.log2,
"log1p": np.log1p,
"squared": np.square,
"sqrt": np.sqrt,
"cubed": lambda d: np.power(d, 3),
"sqrt3": lambda d: np.power(d, 1./3.),

normalization and cumulation
"normalize_to_sum": lambda d: d / np.sum(d),
"normalize_to_max": lambda d: d / np.max(d),
"cumulate": lambda d, **k: np.cumsum(d, **k),
"cumulate_complementary": lambda d, **k: np.cumsum(d[::-1], **k)[::-1],

Binary ..
Elementwise operations
"add": operator.add,
"concat": operator.concat,
"div": operator.truediv,
"truediv": operator.truediv,
"floordiv": operator.floordiv,
"lshift": operator.lshift,
"mod": operator.mod,
"mul": operator.mul,
"matmul": operator.matmul,
"pow": operator.pow,
"rshift": operator.rshift,
"sub": operator.sub,

numpy
"np.power": np.power,
"np.dot": np.dot,

xarray
".coords":
 lambda d, k=None: d.coords if k is None else d.coords[k],
".attrs":
 lambda d, k=None: d.attrs if k is None else d.attrs[k],
".variables":
 lambda d, k=None: d.variables if k is None else d.variables[k],
".data_vars":
 lambda d, k=None: d.data_vars if k is None else d.data_vars[k],

N-ary ...
Masking; these use the corresponding dantro data operations and work with
xarray.DataArray objects.
"create_mask": create_mask,
"where": where,
NOTE For applying a mask, use the xr.where operation.
xarray.pydata.org/en/stable/indexing.html#assigning-values-with-indexing

Array generation
"populate_ndarray": populate_ndarray,
"build_object_array": build_object_array,
"expand_object_array": expand_object_array,

extract labelling info, e.g. for creating higher-dimensional arrays
"extract_dim_names": extract_dim_names,
"extract_coords_from_attrs": extract_coords_from_attrs,

dantro-specific wrappers around other library's functionality
"dantro.apply_along_axis": apply_along_axis,
"dantro.multi_concat": multi_concat,
"dantro.merge": merge,
"dantro.expand_dims": expand_dims,

coordinate transformations, working on shallow copies by default
"transform_coords": transform_coords,
".coords.transform": transform_coords,

evaluating symbolic expressions using sympy
"expression": expression,
NOTE: The `^` operator acts as XOR; use `**` for exponentiation!

numpy
CAUTION Some of these work in-place ...
".sum": lambda d, *a, **k: d.sum(*a, **k),
".prod": lambda d, *a, **k: d.prod(*a, **k),
".cumsum": lambda d, *a, **k: d.cumsum(*a, **k),
".cumprod": lambda d, *a, **k: d.cumprod(*a, **k),

".mean": lambda d, *a, **k: d.mean(*a, **k),
".std": lambda d, *a, **k: d.std(*a, **k),
".min": lambda d, *a, **k: d.min(*a, **k),
".max": lambda d, *a, **k: d.max(*a, **k),
".min.item": lambda d, *a, **k: d.min(*a, **k).item(),
".max.item": lambda d, *a, **k: d.max(*a, **k).item(),
".var": lambda d, *a, **k: d.var(*a, **k),
".argmin": lambda d, *a, **k: d.argmin(*a, **k),
".argmax": lambda d, *a, **k: d.argmax(*a, **k),
".argsort": lambda d, *a, **k: d.argsort(*a, **k),
".argpartition": lambda d, *a, **k: d.argpartition(*a, **k),

".transpose": lambda d, *ax: d.transpose(*ax),
".squeeze": lambda d, **k: d.squeeze(**k),
".flatten": lambda d, **k: d.flatten(**k),
".diagonal": lambda d, **k: d.diagonal(**k),
".trace": lambda d, **k: d.trace(**k),
".sort": lambda d, **k: d.sort(**k),
".fill": lambda d, val: d.fill(val),
".round": lambda d, **k: d.round(**k),
".take": lambda d, i, **k: d.take(i, **k),
".swapaxes": lambda d, a1, a2: d.swapaxes(a1, a2),
".reshape": lambda d, s, **k: d.reshape(s, **k),
".astype": lambda d, t, **k: d.astype(t, **k),

"np.array": np.array,
"np.empty": np.empty,
"np.zeros": np.zeros,
"np.ones": np.ones,
"np.full": np.full,
"np.empty_like": np.empty_like,
"np.zeros_like": np.zeros_like,
"np.ones_like": np.ones_like,
"np.full_like": np.full_like,

"np.eye": np.eye,
"np.arange": np.arange,
"np.linspace": np.linspace,
"np.logspace": np.logspace,

"np.invert": np.invert,
"np.transpose": np.transpose,
"np.flip": np.flip,
"np.diff": np.diff,
"np.reshape": np.reshape,
"np.take": np.take,
"np.repeat": np.repeat,
"np.stack": np.stack,
"np.hstack": np.hstack,
"np.vstack": np.vstack,
"np.concatenate": np.concatenate,

"np.abs": np.abs,
"np.ceil": np.ceil,
"np.floor": np.floor,
"np.round": np.round,
"np.fmod": np.fmod,

"np.where": np.where,
"np.digitize": np.digitize,
"np.histogram": np.histogram,
"np.count_nonzero": np.count_nonzero,

"np.any": np.any,
"np.all": np.all,
"np.allclose": np.allclose,
"np.isnan": np.isnan,
"np.isclose": np.isclose,
"np.isinf": np.isinf,
"np.isfinite": np.isfinite,
"np.isnat": np.isnat,
"np.isneginf": np.isneginf,
"np.isposinf": np.isposinf,
"np.isreal": np.isreal,
"np.isscalar": np.isscalar,

"np.mean": np.mean,
"np.std": np.std,
"np.min": np.min,
"np.max": np.max,
"np.var": np.var,
"np.argmin": np.argmin,
"np.argmax": np.argmax,

xarray
".sel": lambda d, *a, **k: d.sel(*a, **k),
".isel": lambda d, *a, **k: d.isel(*a, **k),
".sel.item": lambda d, *a, **k: d.sel(*a, **k).item(),
".isel.item": lambda d, *a, **k: d.isel(*a, **k).item(),
".drop_sel": lambda d, *a, **k: d.drop_sel(*a, **k),
".drop_isel": lambda d, *a, **k: d.drop_isel(*a, **k),
".drop_dims": lambda d, *a, **k: d.drop_dims(*a, **k),
".squeeze_with_drop": lambda d, *a, **k: d.squeeze(*a, **k, drop=True),
".median": lambda d, *a, **k: d.median(*a, **k),
".quantile": lambda d, *a, **k: d.quantile(*a, **k),
".count": lambda d, *a, **k: d.count(*a, **k),
".diff": lambda d, *a, **k: d.diff(*a, **k),
".where": lambda d, c, *a, **k: d.where(c, *a, **k),
".notnull": lambda d, *a, **k: d.notnull(*a, **k),
".ffill": lambda d, *a, **k: d.ffill(*a, **k),
".bfill": lambda d, *a, **k: d.bfill(*a, **k),
".fillna": lambda d, *a, **k: d.fillna(*a, **k),
".interpolate_na": lambda d, *a, **k: d.interpolate_na(*a, **k),
".dropna": lambda d, *a, **k: d.dropna(*a, **k),
".isin": lambda d, *a, **k: d.isin(*a, **k),
".roll": lambda d, *a, **k: d.roll(*a, **k),
".thin": lambda d, *a, **k: d.thin(*a, **k),
".weighted": lambda d, *a, **k: d.weighted(*a, **k),

".chunk": lambda d, *a, **k: d.chunk(*a, **k),

".rolling": lambda d, *a, **k: d.rolling(*a, **k),
".coarsen": lambda d, *a, **k: d.coarsen(*a, **k),

".groupby": lambda d, g, **k: d.groupby(g, **k),
".groupby_bins": lambda d, g, **k: d.groupby_bins(g, **k),
".map": lambda ds, func, **k: ds.map(func, **k),
".reduce": lambda d, func, **k: d.reduce(func, **k),

".rename": lambda d, *a, **k: d.rename(*a, **k),
".expand_dims": lambda d, *a, **k: d.expand_dims(*a, **k),
".swap_dims": lambda d, *a, **k: d.swap_dims(*a, **k),
".assign_coords": lambda d, *a, **k: d.assign_coords(*a, **k),
".assign_attrs": lambda d, *a, **k: d.assign_attrs(*a, **k),
".assign": lambda d, *a, **k: d.assign(*a, **k),

".to_dataframe": lambda d, *a, **k: d.to_dataframe(*a, **k),

".to_array": lambda ds, *a, **k: ds.to_array(*a, **k),
".rename_dims": lambda ds, *a, **k: ds.rename_dims(*a, **k),
".rename_vars": lambda ds, *a, **k: ds.rename_vars(*a, **k),
".drop_vars": lambda ds, *a, **k: ds.drop_vars(*a, **k),
".assign_var": lambda ds, name, var: ds.assign({name: var}),

"xr.Dataset": lambda *a, **k: xr.Dataset(*a, **k),
"xr.DataArray": lambda *a, **k: xr.DataArray(*a, **k),
"xr.zeros_like": lambda *a, **k: xr.zeros_like(*a, **k),
"xr.ones_like": lambda *a, **k: xr.ones_like(*a, **k),
"xr.full_like": lambda *a, **k: xr.full_like(*a, **k),

"xr.merge": lambda *a, **k: xr.merge(*a, **k),
"xr.concat": lambda *a, **k: xr.concat(*a, **k),
"xr.align": lambda *a, **k: xr.align(*a, **k),
"xr.combine_nested": lambda *a, **k: xr.combine_nested(*a, **k),
"xr.combine_by_coords": lambda *a, **k: xr.combine_by_coords(*a, **k),

... method calls that require additional Python packages
".rolling_exp": lambda d, *a, **k: d.rolling_exp(*a, **k),
".rank": lambda d, *a, **k: d.rank(*a, **k),

fitting with xr.DataArray.polyfit or scipy.optimize
".polyfit": lambda d, *a, **k: d.polyfit(*a, **k),
"curve_fit":
 lambda *a, **k: import_module_or_object("scipy.optimize",
 name="curve_fit")(*a, **k),
NOTE: Use the "lambda" operation to generate the callable

Additionally, the following boolean operations are available.

"==": operator.eq, "eq": operator.eq,
"<": operator.lt, "lt": operator.lt,
"<=": operator.le, "le": operator.le,
">": operator.gt, "gt": operator.gt,
">=": operator.ge, "ge": operator.ge,
"!=": operator.ne, "ne": operator.ne,
"^": operator.xor, "xor": operator.xor,
#
Expecting an iterable as second argument
"contains": operator.contains,
"in": (lambda x, y: x in y),
"not in": (lambda x, y: x not in y),
#
Performing bitwise boolean operations to support numpy logic
"in interval": (lambda x, y: x >= y[0] & x <= y[1]),
"not in interval": (lambda x, y: x < y[0] | x > y[1]),

Warning

While the operations database should be regarded as an append-only database and changing it is highly discouraged, it can be changed, e.g. via the overwrite_existing argument to register_operation() (see Registering operations).

Therefore, the database as it is shown above might not reflect its state during your use of the data operations framework.

Plot Configuration Reference

This page attempts to give an overview of the available configuration options in a plot configuration.
It distinguishes features that are handled by The PlotManager and those handled by the chosen plot creators.

In the following, all examples are given on the level of a single plot configuration, specifically:

my_plot: # name of the plot
 # ... # <-- everything in here is called "plot configuration"

	General Options

	Options handled by the Plot Creators

General Options

The options shown here are handled by PlotManager or BasePlotCreator and are always available.

All options seen here basically act as reserved keywords.
Subsequently, they cannot be used downstream in the plot creator, because they are already handled and not passed on again.

 my_plot:
 # --- Basic configuration options
 # Whether this plot should actually be performed or not
 enabled: true

 # Plot configuration inheritance (from existing base plot configurations)
 based_on: [] # applied in the order given here, recursively updating

 # The file extension for the plot output path
 file_ext: png

 # Path to a custom output directory
 out_dir: ~/my_plot_output

 # Whether to run this plot in debug mode. If given, overwrites the
 # default value specified in the PlotManager
 debug: true

 # Whether to save the plot configuration alongside the plot
 save_plot_cfg: true

 # --- Choosing and configuring a plot creator
 # Manually
 creator: pyplot

 # Initialization parameters for the selected plot creator. The ones given
 # here recursively update those given to PlotManager.__init__
 creator_init_kwargs:
 # Options provided by the BasePlotCreator
 default_ext: ~ # The default file extension
 exist_ok: false # If true, allows overwriting plot output

 # All further options are handled by the specialization's __init__
 # ...

 # --- Plot creator arguments
 # Any further parameters are handled by the plot creator
 # ...

Note

The values given here are not necessarily also the default values.
That depends on the used PlotManager specialization and the involved plot creators.

As always with configuration files, try to specify only those entries that deviate from the default setting.

Hint

For more information regarding overwriting of plot output and writing to a custom directory, see the FAQ.

Options handled by the Plot Creators

The options made available by the individual plot creators, see their respective documentation entries:

	Plot Creators

	The BasePlotCreator

	The PyPlotCreator

	Plots from Multidimensional Data

Base Plot Configuration Pool

This page documents dantro’s base plot configuration pool, sorted by segments and using the naming convention.

Hint

To quickly search for individual entries, the search functionality of your browser (Cmd + F) may be very helpful.
Note that some entries (like those of the YAML anchors) may only be found if the complete file reference is expanded.

	.defaults: default entries

	.creator: selecting a plot creator

	.plot: selecting a plot function

	.style: choosing plot style

	.hlpr: invoking individual plot helper functions

	.animation: controlling animation

	.dag: configuring the DAG framework

	.dag.meta_ops: meta operations

	Complete File Reference

.defaults: default entries

This section defines defaults that are (meant to be) used in all plots.
These find their way into the plot configuration via the `.creator` configs.

.. Aggregated defaults ..
.defaults:
 based_on:
 - .hlpr.tight_layout
 - .defaults.style
 - .defaults.file_ext

.. Individual defaults ..
.defaults.style:
 based_on:
 - .style.use_grid

 style:
 base_style: ~

 figure.dpi: 254 # important also for PDF to avoid rasterization bugs

 lines.linewidth: 1.2
 axes.prop_cycle: *cy_tab20_split
 legend.fontsize: x-small

.defaults.file_ext:
 file_ext: pdf

.creator: selecting a plot creator

More information: Plot Creators

.creator.base:
 based_on: .defaults
 creator: base

.creator.pyplot:
 based_on: .defaults
 creator: pyplot

.creator.universe:
 based_on: .defaults
 creator: universe
 universes: all

.creator.multiverse:
 based_on: .defaults
 creator: multiverse

.. Specializations ..
.creator.universe.any:
 based_on: .creator.universe
 universes: any

.creator.universe.first:
 based_on: .creator.universe
 universes: first

.creator.universe.all:
 based_on: .creator.universe
 universes: all

.plot: selecting a plot function

More information:

	The Plot Function

	Plot Functions

-- Facet grid ---
.plot.facet_grid:
 module: !add [*dantro_plots, .generic]
 plot_func: facet_grid

.. Modifiers ..
.plot.facet_grid.with_auto_encoding:
 based_on: .plot.facet_grid
 auto_encoding: true
 col_wrap: auto

.plot.facet_grid.with_auto_kind:
 based_on: .plot.facet_grid
 kind: auto

.. Specializations: working on xr.DataArray
.plot.facet_grid.line:
 based_on: .plot.facet_grid
 kind: line

.plot.facet_grid.step:
 based_on: .plot.facet_grid
 kind: step

.plot.facet_grid.errorbars:
 based_on: .plot.facet_grid
 kind: errorbars

.plot.facet_grid.errorbands:
 based_on: .plot.facet_grid.errorbars
 use_bands: true

.plot.facet_grid.hist:
 based_on: .plot.facet_grid
 kind: hist

.plot.facet_grid.pcolormesh:
 based_on: .plot.facet_grid
 kind: pcolormesh

.plot.facet_grid.contour:
 based_on: .plot.facet_grid
 kind: contour

.plot.facet_grid.contourf:
 based_on: .plot.facet_grid
 kind: contourf

.plot.facet_grid.imshow:
 based_on: .plot.facet_grid
 kind: imshow

.. Specializations: working on xr.Dataset
.plot.facet_grid.scatter:
 based_on: .plot.facet_grid
 kind: scatter

 edgecolor: none

.plot.facet_grid.scatter3d:
 based_on:
 - .plot.facet_grid
 - .hlpr.projection.3d
 kind: scatter3d

 # For faceting, projection needs to be set via xr.plot.FacetGrid.
 # For the non-faceting case, `.hlpr.projection3d` takes care of that.
 subplot_kws:
 projection: 3d

 # Need to set some better defaults
 cbar_kwargs:
 pad: 0.1
 sharex: False
 sharey: False
 helpers:
 subplots_adjust:
 wspace: 0.1
 hspace: 0.1

-- Multiplot --
.plot.multiplot:
 module: !add [*dantro_plots, .multiplot]
 plot_func: multiplot

-- Legacy plots ---
.plot.lineplot:
 module: !add [*dantro_plots, .basic]
 plot_func: lineplot

.style: choosing plot style

More information: Adjusting a Plot’s Style

More information:
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/tutorials/introductory/customizing.html

.style.use_grid:
 style:
 axes.grid: true
 grid.linewidth: .4
 grid.alpha: .5

.style.no_grid:
 style:
 axes.grid: false

.style.use_tex:
 style:
 text.usetex: true
 # Requires LaTeX to be installed
 # More info: https://matplotlib.org/tutorials/text/pgf.html

-- Property cyclers ---
.style.prop_cycle.tab20:
 style:
 axes.prop_cycle: *cy_tab20

.style.prop_cycle.tab20_split:
 style:
 axes.prop_cycle: *cy_tab20_split

.hlpr: invoking individual plot helper functions

More information: The PlotHelper

.. Figure setup ...
.hlpr.projection.3d:
 helpers:
 setup_figure:
 subplot_kw:
 projection: 3d

.. Saving a figure ..
.hlpr.tight_layout:
 helpers:
 save_figure:
 bbox_inches: tight

.hlpr.no_tight_layout:
 helpers:
 save_figure:
 bbox_inches: ~

.. Limits ...
.hlpr.limits.x.min_max:
 helpers:
 set_limits:
 x: [min, max]

.hlpr.limits.x.from_zero:
 helpers:
 set_limits:
 x: [0, ~]

.hlpr.limits.y.min_max:
 helpers:
 set_limits:
 y: [min, max]

.hlpr.limits.y.from_zero:
 helpers:
 set_limits:
 y: [0, ~]

.hlpr.limits.z.min_max:
 helpers:
 set_limits:
 z: [min, max]

.hlpr.limits.z.from_zero:
 helpers:
 set_limits:
 z: [0, ~]

.. Scales ...
.hlpr.scales.x.log_hist:
 helpers:
 set_scales:
 x: &symlog_thresh1
 scale: symlog
 linthresh: 1

.hlpr.scales.y.log_hist:
 helpers:
 set_scales:
 y:
 <<: *symlog_thresh1

.hlpr.scales.z.log_hist:
 helpers:
 set_scales:
 z:
 <<: *symlog_thresh1

.. Lines ..
.hlpr.lines.h_zero:
 helpers:
 set_hv_lines:
 hlines:
 - pos: 0.
 <<: *style_hvline

.hlpr.lines.v_zero:
 helpers:
 set_hv_lines:
 vlines:
 - pos: 0.
 <<: *style_hvline

.. Legend ...
.hlpr.legend.use:
 helpers:
 set_legend:
 use_legend: true

.hlpr.legend.gather_from_fig:
 helpers:
 set_legend:
 use_legend: true
 gather_from_fig: true

.hlpr.legend.hide:
 helpers:
 set_legend:
 use_legend: false

.hlpr.legend.hide_if_large:
 helpers:
 set_legend:
 use_legend: true
 hiding_threshold: 10

.. Figure legend ..
.hlpr.figlegend.use:
 helpers:
 set_figlegend:
 gather_from_fig: true

.hlpr.figlegend.hide_if_large:
 helpers:
 set_figlegend:
 gather_from_fig: true
 hiding_threshold: 10

.. Automatically formatting x tick labels (on figure level)
.hlpr.autofmt_xdate:
 helpers:
 autofmt_xdate:
 enabled: true

.. Tick locators and formatters ...
.hlpr.ticks.x.hide:
 helpers:
 set_ticks:
 x: &hide_major
 major:
 locs: []
 labels: []

.hlpr.ticks.y.hide:
 helpers:
 set_ticks:
 y:
 <<: *hide_major

.hlpr.ticks.z.hide:
 helpers:
 set_ticks:
 z:
 <<: *hide_major

.hlpr.ticks.x.si_suffixes:
 helpers:
 set_tick_formatters:
 x:
 major: &eng_formatter
 name: EngFormatter
 # places: 0
 sep: '$\,$'

.hlpr.ticks.y.si_suffixes:
 helpers:
 set_tick_formatters:
 y:
 major:
 <<: *eng_formatter

.hlpr.ticks.z.si_suffixes:
 helpers:
 set_tick_formatters:
 z:
 major:
 <<: *eng_formatter

.hlpr.ticks.x.fewer_ticks:
 helpers:
 set_tick_locators:
 x:
 major: &ticker_maxn_fewer
 name: MaxNLocator
 nbins: 5 # --> max. 6 ticks
 steps: [1, 2, 5, 10]
 min_n_ticks: 4

.hlpr.ticks.y.fewer_ticks:
 helpers:
 set_tick_locators:
 y:
 major:
 <<: *ticker_maxn_fewer

.hlpr.ticks.z.fewer_ticks:
 helpers:
 set_tick_locators:
 z:
 major:
 <<: *ticker_maxn_fewer

.hlpr.ticks.x.date:
 helpers:
 set_tick_formatters:
 x:
 major: &date_formatter
 name: DateFormatter
 args: ["%Y-%m-%d"]

.hlpr.ticks.y.date:
 helpers:
 set_tick_formatters:
 y:
 major:
 <<: *date_formatter

.hlpr.ticks.z.date:
 helpers:
 set_tick_formatters:
 z:
 major:
 <<: *date_formatter

.animation: controlling animation

More information: Animations

.animation.defaults:
 based_on:
 - .animation.use_frames # ffmpeg might not be installed

 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 92

 ffmpeg:
 init:
 fps: 10
 saving:
 dpi: 92

.animation.enabled:
 based_on: .animation.defaults
 animation:
 enabled: true

.animation.disabled:
 based_on:
 - .animation.defaults
 - .defaults.file_ext
 animation:
 enabled: false

.animation.use_ffmpeg:
 file_ext: mp4
 animation:
 writer: ffmpeg

.animation.use_frames:
 based_on:
 - .defaults.file_ext
 animation:
 writer: frames

.animation.high_dpi:
 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 144
 ffmpeg:
 saving:
 dpi: 144

.animation.higher_dpi:
 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 254
 ffmpeg:
 saving:
 dpi: 254

.dag: configuring the DAG framework

More information:

	Data Transformation Framework

	Plot Data Selection

-- Options --
.. Verbosity ..
.dag.quiet:
 dag_options:
 verbosity: 0

.dag.verbose:
 dag_options:
 verbosity: 2

.. Caching ..
.dag.cache.disabled:
 dag_options:
 file_cache_defaults:
 read: false
 write: false

.dag.cache.use:
 dag_options:
 file_cache_defaults:
 read: true
 write:
 enabled: true
 min_compute_time: 1.

.dag.cache.read_only:
 dag_options:
 file_cache_defaults:
 read: true
 write: false

.. TransformationDAG object cache ...
.dag.object_cache.use:
 dag_object_cache:
 read: true
 write: true
 use_copy: false

.dag.object_cache.disabled:
 dag_object_cache:
 read: false
 write: false

.dag.object_cache.clear:
 based_on: .dag.object_cache.use
 dag_object_cache:
 write: false
 clear: true
 collect_garbage: true

.. Aggregated DAG default options ...
.dag.defaults:
 based_on:
 - .dag.cache.use
 - .dag.object_cache.use

 dag_options:
 verbosity: 1

-- Visualization --
Parameters controlling DAG visualization
.dag.vis.defaults:
 based_on:
 - .dag.vis.enabled
 - .dag.vis.style

.. Controlling when to generate a visualization
.dag.vis.disabled:
 dag_visualization:
 enabled: false

.dag.vis.enabled:
 dag_visualization:
 enabled: true

.dag.vis.always:
 dag_visualization:
 enabled: true
 when:
 always: true
 only_once: true

.dag.vis.only_on_error:
 dag_visualization:
 enabled: true
 when:
 on_compute_error: true
 on_plot_error: true

.dag.vis.only_in_debug_mode:
 dag_visualization:
 enabled: true
 when:
 on_compute_error: debug
 on_plot_error: debug

.. Controlling DAG visualization style
.dag.vis.style:
 dag_visualization: {}
 # NOTE Will add entries here in the future

-- Definitions --
The entries below set certain tags using the `dag_options.define` argument.
This should not be confused with the .dag.meta_ops defined below.

.dag.define.defaults:
 based_on:
 - .dag.define._SkipPlot

The `_skip_plot` tag can be used as a fallback option and will trigger the
plot to be skipped if the fallback is used.
Usage:
- ...
allow_failure: true
fallback: !dag_tag _skip_plot
#
.dag.define._SkipPlot:
 dag_options:
 define:
 _skip_plot:
 - operation: raise_SkipPlot
 args: [true]

Imports and wraps a bunch of seaborn functions that can be invoked elsewhere.
Usage:
- call: [!dag_tag _create_sns_palette, "husl", 9]
#
.dag.define.sns_cmap_funcs:
 dag_options:
 define:
 _create_sns_palette:
 - import: [seaborn, color_palette]
 - import_and_call: [functools, partial, !dag_prev]

 _create_sns_cmap:
 - import: [seaborn, color_palette]
 - import_and_call: [functools, partial, !dag_prev]
 kwargs:
 as_cmap: true

 _create_sns_diverging_cmap:
 - import: [seaborn, diverging_palette]
 - import_and_call: [functools, partial, !dag_prev]
 kwargs:
 as_cmap: true

.dag.meta_ops: meta operations

The following entries can be included into a plot configuration to make pre-defined meta-operations available for the data transformation framework.

Example

As an example, let’s include the .dag.meta_ops.compute_mean_and_stddev operation to calculate these values over the time and space dimensions and combine them into an xarray.Dataset [https://docs.xarray.dev/en/stable/generated/xarray.Dataset.html#xarray.Dataset].
This approach is very useful for generating a errorbars facet grid plot.

Also note how two further meta-operations are included additionally to create a rolling mean of the data and transform a coordinate dimension into a format that matplotlib accepts.

based_on:
 # select the creator and use the errorbands plot function
 - .creator.pyplot
 - .plot.facet_grid.errorbands

 # include some meta operations
 - .dag.meta_ops.compute_mean_and_stddev
 - .dag.meta_ops.rolling
 - .dag.meta_ops.transform.coords.date2num

 # call some pre-defined helpers
 - .hlpr.ticks.x.date
 - .hlpr.autofmt_xdate
 - .hlpr.limits.x.min_max

 # always create a DAG visualization
 - .dag.vis.defaults
 - .dag.vis.always

select:
 air_temps:
 path: xr_tutorial/arrays/air_temperature
 transform:
 - .squeeze_with_drop

 # for matplotlib to accept this, need to transform the time coords
 - .transform.coords.date2num: [!dag_prev , time]

transform:
 # Compute the mean and standard deviation using included meta-operation
 - compute_mean_and_stddev: [!dag_tag air_temps, [lat, lon]]

 # Apply a rolling mean over 10 data points
 - rolling.mean: [!dag_prev , {time: 10}]
 tag: data

Specify which data variable to plot as line and which as errorbands
x: time
y: mean
yerr: stddev

Pretty it up a bit using helpers
helpers:
 set_labels:
 x: Time
 y: Temperature [K]
 set_title:
 title: Mean Air Temperature

[image: Errorbars plot example with air temperature data]
For background information on this dataset and example, have a look at the xarray documentation [https://docs.xarray.dev/en/stable/examples/area_weighted_temperature.html].

The following entries can be included into a plot configuration to make
certain meta-operations available for the data transformation framework.

.. Data selection operations ..

.dag.meta_ops.select_all:
 dag_options:
 meta_operations:
 #
 # Explicitly select all elements.
 # This can be called on a dantro LabelledDataGroup to resolve all data.
 #
 # Args:
 # 0: The object to call `.sel` on
 #
 select_all:
 - operation: .sel
 args: [!arg 0]
 kwargs: {} # equivalent to {combination_method: auto}

.. Computation ..
.dag.meta_ops.compute_mean_and_stddev:
 dag_options:
 meta_operations:
 #
 # Compute mean and std over some dimensions and combine it into a dataset
 #
 # Args:
 # 0: The xr.DataArray to calculate the values from
 # 1 (optional): Dimension names to reduce, if not given reduces all
 #
 # Returns:
 # xr.Dataset with data variables `mean` and `stddev`
 #
 compute_mean_and_stddev:
 - define: !arg 0
 tag: data
 - define: !arg [1, ~]
 tag: dims

 - .mean: [!dag_tag data, !dag_tag dims]
 tag: mean

 - .std: [!dag_tag data, !dag_tag dims]
 tag: stddev

 - xr.Dataset:
 - mean: !dag_tag mean
 stddev: !dag_tag stddev

.dag.meta_ops.rolling:
 dag_options:
 define:
 # A default window for `.rolling` operations on time dimension.
 # Still needs to be passed explicitly.
 _rolling_time_window: {time: 5}

 meta_operations:
 #
 # Performs a rolling-window operation on an xr.DataArray
 #
 # Note: This exposes only part of the interface ...
 #
 # Args:
 # 0: the data to call `.rolling` on
 # 1: the window operation name, e.g. `mean`
 # 2: window arguments, e.g. `{time: 5}`, can also use the
 # pre-defined `!dag_tag _rolling_time_window` here.
 # center: (optional, default: false) whether to center the coordinates
 # on the windows (default: false)
 # min_periods: (optional, default: None) Minimum number of
 # observations in window required to have a value (otherwise
 # result is NaN). If None, uses the window size.
 #
 rolling:
 - .rolling: [!arg 0, !arg 2]
 kwargs:
 center: !kwarg [center, false]
 min_periods: !kwarg [min_periods, ~]
 - callattr: [!dag_prev , !arg 1]

 #
 # Special case of rolling *mean*
 #
 # Args:
 # 0: the data to call `.rolling` on
 # 1: window arguments, e.g. `{time: 5}` or the pre-defined
 # `!dag_tag _rolling_time_window`
 #
 rolling.mean:
 - rolling: [!arg 0 , mean, !arg 1]

.. Coordinate transformations ...
.dag.meta_ops.transform.coords.date2num:
 dag_options:
 meta_operations:
 #
 # Applies the matplotlib.dates.date2num operation to the specified
 # coordinate dimensions.
 # This becomes necessary if trying to use np.datetime objects for ticks.
 #
 # Args:
 # 0: the data with the to-be-transformed coordinates
 # 1: names of the coordinate dimensions to transform using date2num
 #
 .transform.coords.date2num:
 - define: !arg 0
 tag: d
 - define: !arg 1
 tag: dim
 - import: [matplotlib.dates, date2num]
 - .coords.transform: [!dag_tag d, !dag_tag dim, !dag_prev]

.. Misc ...
.dag.meta_ops.as_dataset:
 dag_options:
 meta_operations:
 #
 # Loads a dantro group into a xr.Dataset
 #
 # Args:
 # 0: the group to load data from
 # 1: paths of properties to load as data variables
 #
 as_dataset:
 - call_lambda:
 - "lambda grp, only: {k:v.data for k, v in grp.items() if k in only}"
 - !arg 0
 - !arg 1
 - xr.Dataset

Complete File Reference

dantro base plot configuration pool

YAML variable definitions that are used below to avoid repetition
_:
 variables:
 plots_module: &dantro_plots dantro.plot.funcs

 aesthetics:
 hvline: &style_hvline
 linestyle: solid
 color: grey
 alpha: .4
 linewidth: 2.
 zorder: -42

 # Defaults for a colorbar
 # https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.colorbar.html
 cbar_kwargs: &cbar_kwargs
 shrink: .65
 aspect: 30
 orientation: vertical
 pad: 0.05

 colors: {}
 cyclers:
 # -- General purpose qualitative cyclers, based on tab20
 tab20: &cy_tab20 >
 cycler("color", ["1f77b4", "aec7e8", "ff7f0e", "ffbb78", "2ca02c",
 "98df8a", "d62728", "ff9896", "9467bd", "c5b0d5",
 "8c564b", "c49c94", "e377c2", "f7b6d2", "7f7f7f",
 "c7c7c7", "bcbd22", "dbdb8d", "17becf", "9edae5"])

 tab20_split: &cy_tab20_split >
 cycler("color", ["1f77b4", "ff7f0e", "2ca02c", "d62728", "9467bd",
 "8c564b", "e377c2", "7f7f7f", "bcbd22", "17becf",
 "aec7e8", "ffbb78", "98df8a", "ff9896", "c5b0d5",
 "c49c94", "f7b6d2", "c7c7c7", "dbdb8d", "9edae5"])

===
╔╦╗╔═╗╔═╗╔═╗╦ ╦╦ ╔╦╗╔═╗
║║║╣ ╠╣ ╠═╣║ ║║ ║ ╚═╗
═╩╝╚═╝╚ ╩ ╩╚═╝╩═╝╩ ╚═╝
===
start: .defaults
This section defines defaults that are (meant to be) used in all plots.
These find their way into the plot configuration via the `.creator` configs.

.. Aggregated defaults ..
.defaults:
 based_on:
 - .hlpr.tight_layout
 - .defaults.style
 - .defaults.file_ext

.. Individual defaults ..
.defaults.style:
 based_on:
 - .style.use_grid

 style:
 base_style: ~

 figure.dpi: 254 # important also for PDF to avoid rasterization bugs

 lines.linewidth: 1.2
 axes.prop_cycle: *cy_tab20_split
 legend.fontsize: x-small

.defaults.file_ext:
 file_ext: pdf

===
╔═╗╦ ╔═╗╔╦╗ ╔═╗╦═╗╔═╗╔═╗╔╦╗╔═╗╦═╗╔═╗
╠═╝║ ║ ║ ║ ║ ╠╦╝║╣ ╠═╣ ║ ║ ║╠╦╝╚═╗
╩ ╩═╝╚═╝ ╩ ╚═╝╩╚═╚═╝╩ ╩ ╩ ╚═╝╩╚═╚═╝
===
start: .creator
.creator.base:
 based_on: .defaults
 creator: base

.creator.pyplot:
 based_on: .defaults
 creator: pyplot

.creator.universe:
 based_on: .defaults
 creator: universe
 universes: all

.creator.multiverse:
 based_on: .defaults
 creator: multiverse

.. Specializations ..
.creator.universe.any:
 based_on: .creator.universe
 universes: any

.creator.universe.first:
 based_on: .creator.universe
 universes: first

.creator.universe.all:
 based_on: .creator.universe
 universes: all

===
╔═╗╦ ╔═╗╔╦╗ ╔═╗╦ ╦╔╗╔╔═╗╔╦╗╦╔═╗╔╗╔╔═╗
╠═╝║ ║ ║ ║ ╠╣ ║ ║║║║║ ║ ║║ ║║║║╚═╗
╩ ╩═╝╚═╝ ╩ ╚ ╚═╝╝╚╝╚═╝ ╩ ╩╚═╝╝╚╝╚═╝
===
start: .plot
-- Facet grid ---
.plot.facet_grid:
 module: !add [*dantro_plots, .generic]
 plot_func: facet_grid

.. Modifiers ..
.plot.facet_grid.with_auto_encoding:
 based_on: .plot.facet_grid
 auto_encoding: true
 col_wrap: auto

.plot.facet_grid.with_auto_kind:
 based_on: .plot.facet_grid
 kind: auto

.. Specializations: working on xr.DataArray
.plot.facet_grid.line:
 based_on: .plot.facet_grid
 kind: line

.plot.facet_grid.step:
 based_on: .plot.facet_grid
 kind: step

.plot.facet_grid.errorbars:
 based_on: .plot.facet_grid
 kind: errorbars

.plot.facet_grid.errorbands:
 based_on: .plot.facet_grid.errorbars
 use_bands: true

.plot.facet_grid.hist:
 based_on: .plot.facet_grid
 kind: hist

.plot.facet_grid.pcolormesh:
 based_on: .plot.facet_grid
 kind: pcolormesh

.plot.facet_grid.contour:
 based_on: .plot.facet_grid
 kind: contour

.plot.facet_grid.contourf:
 based_on: .plot.facet_grid
 kind: contourf

.plot.facet_grid.imshow:
 based_on: .plot.facet_grid
 kind: imshow

.. Specializations: working on xr.Dataset
.plot.facet_grid.scatter:
 based_on: .plot.facet_grid
 kind: scatter

 edgecolor: none

.plot.facet_grid.scatter3d:
 based_on:
 - .plot.facet_grid
 - .hlpr.projection.3d
 kind: scatter3d

 # For faceting, projection needs to be set via xr.plot.FacetGrid.
 # For the non-faceting case, `.hlpr.projection3d` takes care of that.
 subplot_kws:
 projection: 3d

 # Need to set some better defaults
 cbar_kwargs:
 pad: 0.1
 sharex: False
 sharey: False
 helpers:
 subplots_adjust:
 wspace: 0.1
 hspace: 0.1

-- Multiplot --
.plot.multiplot:
 module: !add [*dantro_plots, .multiplot]
 plot_func: multiplot

-- Legacy plots ---
.plot.lineplot:
 module: !add [*dantro_plots, .basic]
 plot_func: lineplot

===
╔═╗╔╦╗╦ ╦╦ ╔═╗
╚═╗ ║ ╚╦╝║ ║╣
╚═╝ ╩ ╩ ╩═╝╚═╝
===
start: .style
More information:
https://matplotlib.org/gallery/style_sheets/style_sheets_reference.html
https://matplotlib.org/stable/tutorials/introductory/customizing.html

.style.use_grid:
 style:
 axes.grid: true
 grid.linewidth: .4
 grid.alpha: .5

.style.no_grid:
 style:
 axes.grid: false

.style.use_tex:
 style:
 text.usetex: true
 # Requires LaTeX to be installed
 # More info: https://matplotlib.org/tutorials/text/pgf.html

-- Property cyclers ---
.style.prop_cycle.tab20:
 style:
 axes.prop_cycle: *cy_tab20

.style.prop_cycle.tab20_split:
 style:
 axes.prop_cycle: *cy_tab20_split

===
╔═╗╦ ╔═╗╔╦╗ ╦ ╦╔═╗╦ ╔═╗╔═╗╦═╗╔═╗
╠═╝║ ║ ║ ║ ╠═╣║╣ ║ ╠═╝║╣ ╠╦╝╚═╗
╩ ╩═╝╚═╝ ╩ ╩ ╩╚═╝╩═╝╩ ╚═╝╩╚═╚═╝
===
start: .hlpr
.. Figure setup ...
.hlpr.projection.3d:
 helpers:
 setup_figure:
 subplot_kw:
 projection: 3d

.. Saving a figure ..
.hlpr.tight_layout:
 helpers:
 save_figure:
 bbox_inches: tight

.hlpr.no_tight_layout:
 helpers:
 save_figure:
 bbox_inches: ~

.. Limits ...
.hlpr.limits.x.min_max:
 helpers:
 set_limits:
 x: [min, max]

.hlpr.limits.x.from_zero:
 helpers:
 set_limits:
 x: [0, ~]

.hlpr.limits.y.min_max:
 helpers:
 set_limits:
 y: [min, max]

.hlpr.limits.y.from_zero:
 helpers:
 set_limits:
 y: [0, ~]

.hlpr.limits.z.min_max:
 helpers:
 set_limits:
 z: [min, max]

.hlpr.limits.z.from_zero:
 helpers:
 set_limits:
 z: [0, ~]

.. Scales ...
.hlpr.scales.x.log_hist:
 helpers:
 set_scales:
 x: &symlog_thresh1
 scale: symlog
 linthresh: 1

.hlpr.scales.y.log_hist:
 helpers:
 set_scales:
 y:
 <<: *symlog_thresh1

.hlpr.scales.z.log_hist:
 helpers:
 set_scales:
 z:
 <<: *symlog_thresh1

.. Lines ..
.hlpr.lines.h_zero:
 helpers:
 set_hv_lines:
 hlines:
 - pos: 0.
 <<: *style_hvline

.hlpr.lines.v_zero:
 helpers:
 set_hv_lines:
 vlines:
 - pos: 0.
 <<: *style_hvline

.. Legend ...
.hlpr.legend.use:
 helpers:
 set_legend:
 use_legend: true

.hlpr.legend.gather_from_fig:
 helpers:
 set_legend:
 use_legend: true
 gather_from_fig: true

.hlpr.legend.hide:
 helpers:
 set_legend:
 use_legend: false

.hlpr.legend.hide_if_large:
 helpers:
 set_legend:
 use_legend: true
 hiding_threshold: 10

.. Figure legend ..
.hlpr.figlegend.use:
 helpers:
 set_figlegend:
 gather_from_fig: true

.hlpr.figlegend.hide_if_large:
 helpers:
 set_figlegend:
 gather_from_fig: true
 hiding_threshold: 10

.. Automatically formatting x tick labels (on figure level)
.hlpr.autofmt_xdate:
 helpers:
 autofmt_xdate:
 enabled: true

.. Tick locators and formatters ...
.hlpr.ticks.x.hide:
 helpers:
 set_ticks:
 x: &hide_major
 major:
 locs: []
 labels: []

.hlpr.ticks.y.hide:
 helpers:
 set_ticks:
 y:
 <<: *hide_major

.hlpr.ticks.z.hide:
 helpers:
 set_ticks:
 z:
 <<: *hide_major

.hlpr.ticks.x.si_suffixes:
 helpers:
 set_tick_formatters:
 x:
 major: &eng_formatter
 name: EngFormatter
 # places: 0
 sep: '$\,$'

.hlpr.ticks.y.si_suffixes:
 helpers:
 set_tick_formatters:
 y:
 major:
 <<: *eng_formatter

.hlpr.ticks.z.si_suffixes:
 helpers:
 set_tick_formatters:
 z:
 major:
 <<: *eng_formatter

.hlpr.ticks.x.fewer_ticks:
 helpers:
 set_tick_locators:
 x:
 major: &ticker_maxn_fewer
 name: MaxNLocator
 nbins: 5 # --> max. 6 ticks
 steps: [1, 2, 5, 10]
 min_n_ticks: 4

.hlpr.ticks.y.fewer_ticks:
 helpers:
 set_tick_locators:
 y:
 major:
 <<: *ticker_maxn_fewer

.hlpr.ticks.z.fewer_ticks:
 helpers:
 set_tick_locators:
 z:
 major:
 <<: *ticker_maxn_fewer

.hlpr.ticks.x.date:
 helpers:
 set_tick_formatters:
 x:
 major: &date_formatter
 name: DateFormatter
 args: ["%Y-%m-%d"]

.hlpr.ticks.y.date:
 helpers:
 set_tick_formatters:
 y:
 major:
 <<: *date_formatter

.hlpr.ticks.z.date:
 helpers:
 set_tick_formatters:
 z:
 major:
 <<: *date_formatter

===
╔═╗╔╗╔╦╔╦╗╔═╗╔╦╗╦╔═╗╔╗╔
╠═╣║║║║║║║╠═╣ ║ ║║ ║║║║
╩ ╩╝╚╝╩╩ ╩╩ ╩ ╩ ╩╚═╝╝╚╝
===
start: .animation
.animation.defaults:
 based_on:
 - .animation.use_frames # ffmpeg might not be installed

 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 92

 ffmpeg:
 init:
 fps: 10
 saving:
 dpi: 92

.animation.enabled:
 based_on: .animation.defaults
 animation:
 enabled: true

.animation.disabled:
 based_on:
 - .animation.defaults
 - .defaults.file_ext
 animation:
 enabled: false

.animation.use_ffmpeg:
 file_ext: mp4
 animation:
 writer: ffmpeg

.animation.use_frames:
 based_on:
 - .defaults.file_ext
 animation:
 writer: frames

.animation.high_dpi:
 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 144
 ffmpeg:
 saving:
 dpi: 144

.animation.higher_dpi:
 animation:
 writer_kwargs:
 frames:
 saving:
 dpi: 254
 ffmpeg:
 saving:
 dpi: 254

===
╔╦╗╔═╗╔═╗ ╔═╗╦═╗╔═╗╔╦╗╔═╗╦ ╦╔═╗╦═╗╦╔═
║║╠═╣║ ╦ ╠╣ ╠╦╝╠═╣║║║║╣ ║║║║ ║╠╦╝╠╩╗
═╩╝╩ ╩╚═╝ ╚ ╩╚═╩ ╩╩ ╩╚═╝╚╩╝╚═╝╩╚═╩ ╩
===
start: .dag
-- Options --
.. Verbosity ..
.dag.quiet:
 dag_options:
 verbosity: 0

.dag.verbose:
 dag_options:
 verbosity: 2

.. Caching ..
.dag.cache.disabled:
 dag_options:
 file_cache_defaults:
 read: false
 write: false

.dag.cache.use:
 dag_options:
 file_cache_defaults:
 read: true
 write:
 enabled: true
 min_compute_time: 1.

.dag.cache.read_only:
 dag_options:
 file_cache_defaults:
 read: true
 write: false

.. TransformationDAG object cache ...
.dag.object_cache.use:
 dag_object_cache:
 read: true
 write: true
 use_copy: false

.dag.object_cache.disabled:
 dag_object_cache:
 read: false
 write: false

.dag.object_cache.clear:
 based_on: .dag.object_cache.use
 dag_object_cache:
 write: false
 clear: true
 collect_garbage: true

.. Aggregated DAG default options ...
.dag.defaults:
 based_on:
 - .dag.cache.use
 - .dag.object_cache.use

 dag_options:
 verbosity: 1

-- Visualization --
Parameters controlling DAG visualization
.dag.vis.defaults:
 based_on:
 - .dag.vis.enabled
 - .dag.vis.style

.. Controlling when to generate a visualization
.dag.vis.disabled:
 dag_visualization:
 enabled: false

.dag.vis.enabled:
 dag_visualization:
 enabled: true

.dag.vis.always:
 dag_visualization:
 enabled: true
 when:
 always: true
 only_once: true

.dag.vis.only_on_error:
 dag_visualization:
 enabled: true
 when:
 on_compute_error: true
 on_plot_error: true

.dag.vis.only_in_debug_mode:
 dag_visualization:
 enabled: true
 when:
 on_compute_error: debug
 on_plot_error: debug

.. Controlling DAG visualization style
.dag.vis.style:
 dag_visualization: {}
 # NOTE Will add entries here in the future

-- Definitions --
The entries below set certain tags using the `dag_options.define` argument.
This should not be confused with the .dag.meta_ops defined below.

.dag.define.defaults:
 based_on:
 - .dag.define._SkipPlot

The `_skip_plot` tag can be used as a fallback option and will trigger the
plot to be skipped if the fallback is used.
Usage:
- ...
allow_failure: true
fallback: !dag_tag _skip_plot
#
.dag.define._SkipPlot:
 dag_options:
 define:
 _skip_plot:
 - operation: raise_SkipPlot
 args: [true]

Imports and wraps a bunch of seaborn functions that can be invoked elsewhere.
Usage:
- call: [!dag_tag _create_sns_palette, "husl", 9]
#
.dag.define.sns_cmap_funcs:
 dag_options:
 define:
 _create_sns_palette:
 - import: [seaborn, color_palette]
 - import_and_call: [functools, partial, !dag_prev]

 _create_sns_cmap:
 - import: [seaborn, color_palette]
 - import_and_call: [functools, partial, !dag_prev]
 kwargs:
 as_cmap: true

 _create_sns_diverging_cmap:
 - import: [seaborn, diverging_palette]
 - import_and_call: [functools, partial, !dag_prev]
 kwargs:
 as_cmap: true

===
╔╦╗╔═╗╔═╗ ╔╦╗╔═╗╔╦╗╔═╗ ╔═╗╔═╗╔═╗╦═╗╔═╗╔╦╗╦╔═╗╔╗╔╔═╗
║║╠═╣║ ╦ ║║║║╣ ║ ╠═╣ ║ ║╠═╝║╣ ╠╦╝╠═╣ ║ ║║ ║║║║╚═╗
═╩╝╩ ╩╚═╝ ╩ ╩╚═╝ ╩ ╩ ╩ ╚═╝╩ ╚═╝╩╚═╩ ╩ ╩ ╩╚═╝╝╚╝╚═╝
===
start: .dag.meta_ops
The following entries can be included into a plot configuration to make
certain meta-operations available for the data transformation framework.

.. Data selection operations ..

.dag.meta_ops.select_all:
 dag_options:
 meta_operations:
 #
 # Explicitly select all elements.
 # This can be called on a dantro LabelledDataGroup to resolve all data.
 #
 # Args:
 # 0: The object to call `.sel` on
 #
 select_all:
 - operation: .sel
 args: [!arg 0]
 kwargs: {} # equivalent to {combination_method: auto}

.. Computation ..
.dag.meta_ops.compute_mean_and_stddev:
 dag_options:
 meta_operations:
 #
 # Compute mean and std over some dimensions and combine it into a dataset
 #
 # Args:
 # 0: The xr.DataArray to calculate the values from
 # 1 (optional): Dimension names to reduce, if not given reduces all
 #
 # Returns:
 # xr.Dataset with data variables `mean` and `stddev`
 #
 compute_mean_and_stddev:
 - define: !arg 0
 tag: data
 - define: !arg [1, ~]
 tag: dims

 - .mean: [!dag_tag data, !dag_tag dims]
 tag: mean

 - .std: [!dag_tag data, !dag_tag dims]
 tag: stddev

 - xr.Dataset:
 - mean: !dag_tag mean
 stddev: !dag_tag stddev

.dag.meta_ops.rolling:
 dag_options:
 define:
 # A default window for `.rolling` operations on time dimension.
 # Still needs to be passed explicitly.
 _rolling_time_window: {time: 5}

 meta_operations:
 #
 # Performs a rolling-window operation on an xr.DataArray
 #
 # Note: This exposes only part of the interface ...
 #
 # Args:
 # 0: the data to call `.rolling` on
 # 1: the window operation name, e.g. `mean`
 # 2: window arguments, e.g. `{time: 5}`, can also use the
 # pre-defined `!dag_tag _rolling_time_window` here.
 # center: (optional, default: false) whether to center the coordinates
 # on the windows (default: false)
 # min_periods: (optional, default: None) Minimum number of
 # observations in window required to have a value (otherwise
 # result is NaN). If None, uses the window size.
 #
 rolling:
 - .rolling: [!arg 0, !arg 2]
 kwargs:
 center: !kwarg [center, false]
 min_periods: !kwarg [min_periods, ~]
 - callattr: [!dag_prev , !arg 1]

 #
 # Special case of rolling *mean*
 #
 # Args:
 # 0: the data to call `.rolling` on
 # 1: window arguments, e.g. `{time: 5}` or the pre-defined
 # `!dag_tag _rolling_time_window`
 #
 rolling.mean:
 - rolling: [!arg 0 , mean, !arg 1]

.. Coordinate transformations ...
.dag.meta_ops.transform.coords.date2num:
 dag_options:
 meta_operations:
 #
 # Applies the matplotlib.dates.date2num operation to the specified
 # coordinate dimensions.
 # This becomes necessary if trying to use np.datetime objects for ticks.
 #
 # Args:
 # 0: the data with the to-be-transformed coordinates
 # 1: names of the coordinate dimensions to transform using date2num
 #
 .transform.coords.date2num:
 - define: !arg 0
 tag: d
 - define: !arg 1
 tag: dim
 - import: [matplotlib.dates, date2num]
 - .coords.transform: [!dag_tag d, !dag_tag dim, !dag_prev]

.. Misc ...
.dag.meta_ops.as_dataset:
 dag_options:
 meta_operations:
 #
 # Loads a dantro group into a xr.Dataset
 #
 # Args:
 # 0: the group to load data from
 # 1: paths of properties to load as data variables
 #
 as_dataset:
 - call_lambda:
 - "lambda grp, only: {k:v.data for k, v in grp.items() if k in only}"
 - !arg 0
 - !arg 1
 - xr.Dataset

===

Page and Module Index

	Page Index

	Python Module Index

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dantro	

 	
 	
 dantro._copy	

 	
 	
 dantro._dag_utils	

 	
 	
 dantro._hash	

 	
 	
 dantro._import_tools	

 	
 	
 dantro._registry	

 	
 	
 dantro._yaml	

 	
 	
 dantro.abc	

 	
 	
 dantro.base	

 	
 	
 dantro.containers	

 	
 	
 dantro.containers._registry	

 	
 	
 dantro.containers.general	

 	
 	
 dantro.containers.link	

 	
 	
 dantro.containers.numeric	

 	
 	
 dantro.containers.path	

 	
 	
 dantro.containers.xr	

 	
 	
 dantro.dag	

 	
 	
 dantro.data_loaders	

 	
 	
 dantro.data_loaders._registry	

 	
 	
 dantro.data_loaders.fspath	

 	
 	
 dantro.data_loaders.hdf5	

 	
 	
 dantro.data_loaders.numpy	

 	
 	
 dantro.data_loaders.pandas	

 	
 	
 dantro.data_loaders.pickle	

 	
 	
 dantro.data_loaders.text	

 	
 	
 dantro.data_loaders.xarray	

 	
 	
 dantro.data_loaders.yaml	

 	
 	
 dantro.data_mngr	

 	
 	
 dantro.data_ops	

 	
 	
 dantro.data_ops._base_ops	

 	
 	
 dantro.data_ops.apply	

 	
 	
 dantro.data_ops.arr_ops	

 	
 	
 dantro.data_ops.ctrl_ops	

 	
 	
 dantro.data_ops.db	

 	
 	
 dantro.data_ops.db_tools	

 	
 	
 dantro.data_ops.expr_ops	

 	
 	
 dantro.data_ops.hooks	

 	
 	
 dantro.exceptions	

 	
 	
 dantro.groups	

 	
 	
 dantro.groups._registry	

 	
 	
 dantro.groups.dirpath	

 	
 	
 dantro.groups.graph	

 	
 	
 dantro.groups.labelled	

 	
 	
 dantro.groups.ordered	

 	
 	
 dantro.groups.psp	

 	
 	
 dantro.groups.time_series	

 	
 	
 dantro.logging	

 	
 	
 dantro.mixins	

 	
 	
 dantro.mixins.base	

 	
 	
 dantro.mixins.general	

 	
 	
 dantro.mixins.indexing	

 	
 	
 dantro.mixins.numeric	

 	
 	
 dantro.mixins.proxy_support	

 	
 	
 dantro.plot	

 	
 	
 dantro.plot._cfg	

 	
 	
 dantro.plot.creators	

 	
 	
 dantro.plot.creators.base	

 	
 	
 dantro.plot.creators.psp	

 	
 	
 dantro.plot.creators.pyplot	

 	
 	
 dantro.plot.funcs	

 	
 	
 dantro.plot.funcs._multiplot	

 	
 	
 dantro.plot.funcs._utils	

 	
 	
 dantro.plot.funcs.basic	

 	
 	
 dantro.plot.funcs.generic	

 	
 	
 dantro.plot.funcs.graph	

 	
 	
 dantro.plot.funcs.multiplot	

 	
 	
 dantro.plot.plot_helper	

 	
 	
 dantro.plot.utils	

 	
 	
 dantro.plot.utils._file_writer	

 	
 	
 dantro.plot.utils.color_mngr	

 	
 	
 dantro.plot.utils.mpl	

 	
 	
 dantro.plot.utils.plot_func	

 	
 	
 dantro.plot_mngr	

 	
 	
 dantro.proxy	

 	
 	
 dantro.proxy.hdf5	

 	
 	
 dantro.tools	

 	
 	
 dantro.utils	

 	
 	
 dantro.utils.coords	

 	
 	
 dantro.utils.link	

 	
 	
 dantro.utils.nx	

 	
 	
 dantro.utils.ordereddict	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	
 	__abs__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__add__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__bool__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__call__() (AbstractPlotCreator method)

 	(BasePlotCreator method)

 	(is_plot_func method)

 	(make_facet_grid_plot method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	__ceil__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__contains__() (AbstractDataAttrs method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(CollectionMixin method)

 	(ContainerRegistry method)

 	(DAGObjects method)

 	(DataLoaderRegistry method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(GroupRegistry method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntegerItemAccessMixin method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(ObjectRegistry method)

 	(OrderedDataGroup method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	__del__() (Hdf5DataProxy method)

 	__delitem__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntegerItemAccessMixin method)

 	(IntOrderedDict method)

 	(ItemAccessMixin method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__divmod__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__enter__() (adjusted_log_levels method)

 	(figure_leak_prevention method)

 	(FileWriter method)

 	(temporarily_changed_axis method)

 	__eq__() (_strongref method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(BasicComparisonMixin method)

 	(ComparisonMixin method)

 	(DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(KeywordArgument method)

 	(LabelledDataGroup method)

 	(Link method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(Placeholder method)

 	(PlaceholderWithFallback method)

 	(PositionalArgument method)

 	(ResultPlaceholder method)

 	(StringContainer method)

 	(StrongLink method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__exit__() (adjusted_log_levels method)

 	(figure_leak_prevention method)

 	(FileWriter method)

 	(temporarily_changed_axis method)

 	__find_element_to_insert_after() (KeyOrderedDict method)

 	__floor__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__floordiv__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__format__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__ge__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__getattr__() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	__getitem__() (AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DAGObjects method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntegerItemAccessMixin method)

 	(ItemAccessMixin method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__getstate__() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Hdf5ProxySupportMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(ProxySupportMixin method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	__gt__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__hash__() (DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	(DataManager method)

 	(KeywordArgument method)

 	(Placeholder method)

 	(PlaceholderWithFallback method)

 	(PositionalArgument method)

 	(ResultPlaceholder method)

 	(Transformation method)

 	__iadd__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__ifloordiv__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__imod__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__imul__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__in_direct_insertion_mode (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectInsertionModeMixin attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	__init__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(AbstractDataProxy method)

 	(AbstractPlotCreator method)

 	(added_sys_path method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(BaseDataProxy method)

 	(BasePlotCreator method)

 	(ColorManager method)

 	(DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGObjects method)

 	(DAGReference method)

 	(DAGTag method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(figure_leak_prevention method)

 	(FileWriter method)

 	(GraphGroup method)

 	(Hdf5DataProxy method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(is_plot_func method)

 	(ItemAccessError method)

 	(KeyOrderedDict method)

 	(KeywordArgument method)

 	(LabelledDataGroup method)

 	(LazyLoader method)

 	(Link method)

 	(LinkContainer method)

 	(make_facet_grid_plot method)

 	(MultiversePlotCreator method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(Placeholder method)

 	(PlotFuncResolver method)

 	(PlotHelper method)

 	(PlotHelperError method)

 	(PlotHelperErrors method)

 	(PlotManager method)

 	(PoolCallbackHandler method)

 	(PositionalArgument method)

 	(PyPlotCreator method)

 	(ResultPlaceholder method)

 	(StringContainer method)

 	(StrongLink method)

 	(temporarily_changed_axis method)

 	(temporary_sys_modules method)

 	(TimeSeriesGroup method)

 	(Transformation method)

 	(TransformationDAG method)

 	(UniversePlotCreator method)

 	(XrDataContainer method)

 	__invert__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__ipow__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__isub__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__iter__() (BaseDataAttrs method)

 	(BaseDataGroup method)

 	(CollectionMixin method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	__itruediv__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__last_keys (HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(TimeSeriesGroup attribute)

 	__le__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__len__() (AbstractDataAttrs method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(CollectionMixin method)

 	(DAGObjects method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__locked (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(LockDataMixin attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	__lt__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__marker (KeyOrderedDict attribute)

 	__mod__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__mul__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__ne__() (ComparisonMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__neg__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__num_comparisons (KeyOrderedDict attribute)

 	__pos__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__pow__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__reduce__() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	__repr__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(KeywordArgument method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(PlaceholderWithFallback method)

 	(PositionalArgument method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(Transformation method)

 	(XrDataContainer method)

 	__resolve_target_ref() (Link method)

 	__reversed__() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	__round__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__setitem__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntegerItemAccessMixin method)

 	(IntOrderedDict method)

 	(ItemAccessMixin method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__setstate__() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	__sizeof__() (BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(SizeOfMixin method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	__str__() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DAGObjects method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(ItemAccessError method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(PlotHelperError method)

 	(PlotHelperErrors method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(Transformation method)

 	(TransformationDAG method)

 	(XrDataContainer method)

 	__sub__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__truediv__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	__trunc__() (NumbersMixin method)

 	(NumpyDataContainer method)

 	(UnaryOperationsMixin method)

 	(XrDataContainer method)

 	__update() (KeyOrderedDict method)

 	__version__ (in module dantro)

 	_abc_impl (AbstractDataAttrs attribute)

 	(AbstractDataContainer attribute)

 	(AbstractDataGroup attribute)

 	(AbstractDataProxy attribute)

 	(AbstractPlotCreator attribute)

 	(BaseDataAttrs attribute)

 	(BaseDataContainer attribute)

 	(BaseDataGroup attribute)

 	(BaseDataProxy attribute)

 	(BasePlotCreator attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(FileWriter attribute)

 	(GraphGroup attribute)

 	(Hdf5DataProxy attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(LinkContainer attribute)

 	(MultiversePlotCreator attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(ObjectContainer attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(PyPlotCreator attribute)

 	(StringContainer attribute)

 	(TimeSeriesGroup attribute)

 	(UniversePlotCreator attribute)

 	(XrDataContainer attribute)

 	_add_container() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_add_container_callback() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_add_container_to_data() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_add_meta_operation_nodes() (TransformationDAG method)

 	_allow_failure (Transformation attribute)

 	_ALLOWED_CONT_TYPES (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_apply_metadata() (XrDataContainer method)

 	_args (Transformation attribute)

 	_attach_attributes() (PlotFuncResolver method)

 	_attrs (AttrsMixin attribute)

 	(BaseDataContainer attribute)

 	(BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(LinkContainer attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(ObjectContainer attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(StringContainer attribute)

 	(TimeSeriesGroup attribute)

 	(XrDataContainer attribute)

 	_ATTRS_CLS (AttrsMixin attribute)

 	(BaseDataContainer attribute)

 	(BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(LinkContainer attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(ObjectContainer attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(StringContainer attribute)

 	(TimeSeriesGroup attribute)

 	(XrDataContainer attribute)

 	_AUTO_PLOT_KINDS (in module dantro.plot.funcs.generic)

 	_axis_cfg (PlotHelper property)

 	_BASE_LOAD_CFG (DataManager attribute)

 	_build_style_context() (MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_cache (Transformation attribute)

 	_cache_result() (Transformation method)

 	_check_alignment() (GraphGroup method)

 	_check_cont() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_check_data() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(CheckDataMixin method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_check_name() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_check_object() (ContainerRegistry method)

 	(DataLoaderRegistry method)

 	(GroupRegistry method)

 	(ObjectRegistry method)

 	_check_plot_name() (PlotManager method)

 	_check_skipping() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_check_visited() (in module dantro.plot._cfg)

 	_COLLECTIVE_SELECT_THRESHOLD (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	
 	_combine_by_concatenation() (HeterogeneousTimeSeriesGroup class method)

 	(LabelledDataGroup class method)

 	(TimeSeriesGroup class method)

 	_combine_by_merge() (HeterogeneousTimeSeriesGroup class method)

 	(LabelledDataGroup class method)

 	(TimeSeriesGroup class method)

 	_combine_dag_results_and_plot_cfg() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_compile_axis_specific_cfg() (PlotHelper method)

 	_compute_dag() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_COND_TREE_CONDENSE_THRESH (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_COND_TREE_MAX_LEVEL (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_container_from_h5dataset() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_context (Transformation attribute)

 	_coords_linked() (in module dantro.utils.coords)

 	_coords_match() (in module dantro.plot.plot_helper)

 	_coords_scalar() (in module dantro.utils.coords)

 	_coords_start_and_step() (in module dantro.utils.coords)

 	_coords_trivial() (in module dantro.utils.coords)

 	_create_cmap() (ColorManager method)

 	_create_dag() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_create_norm() (ColorManager method)

 	_dag (Transformation attribute)

 	_DAG_OBJECT_CACHE (in module dantro.plot.creators.base)

 	_data (DAGMetaOperationTag attribute)

 	(DAGNode attribute)

 	(DAGReference attribute)

 	(DAGTag attribute)

 	(KeywordArgument attribute)

 	(Placeholder attribute)

 	(PlaceholderWithFallback attribute)

 	(PositionalArgument attribute)

 	(ResultPlaceholder attribute)

 	_DATA_CONTAINER_CLASSES (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_DATA_GROUP_CLASSES (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_decode_attr_val() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_decorator() (ContainerRegistry method)

 	(DataLoaderRegistry method)

 	(GroupRegistry method)

 	(ObjectRegistry method)

 	_deepcopy() (in module dantro._copy)

 	_DEFAULT_GROUPS (DataManager attribute)

 	_DEFAULT_TREE_CACHE_PATH (DataManager attribute)

 	_DESC (ContainerRegistry attribute)

 	(DataLoaderRegistry attribute)

 	(GroupRegistry attribute)

 	(ObjectRegistry attribute)

 	_determine_container_type() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_determine_group_type() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_determine_name() (ContainerRegistry method)

 	(DataLoaderRegistry method)

 	(GroupRegistry method)

 	(ObjectRegistry method)

 	_determine_type() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_direct_insertion_mode() (BaseDataGroup method)

 	(DataManager method)

 	(DirectInsertionModeMixin method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_draw_graph() (in module dantro.plot.funcs.graph)

 	_enter_direct_insertion_mode() (BaseDataGroup method)

 	(DataManager method)

 	(DirectInsertionModeMixin method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_evaluate_type_mapping() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_exit_direct_insertion_mode() (BaseDataGroup method)

 	(DataManager method)

 	(DirectInsertionModeMixin method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_EXPECTED_TYPE (ContainerRegistry attribute)

 	(DataLoaderRegistry attribute)

 	(GroupRegistry attribute)

 	(ObjectRegistry attribute)

 	_extract_metadata() (XrDataContainer method)

 	_FACET_GRID_FUNCS (in module dantro.plot.funcs.generic)

 	_FACET_GRID_KINDS (in module dantro.plot.funcs.generic)

 	_fallback (KeywordArgument attribute)

 	(PlaceholderWithFallback attribute)

 	(PositionalArgument attribute)

 	(Transformation attribute)

 	_fc_opts (Transformation attribute)

 	_FIGURE_HELPERS (PlotHelper attribute)

 	_find_axis_coords() (PlotHelper method)

 	_find_in_pool() (in module dantro.plot._cfg)

 	_find_tag() (TransformationDAG method)

 	_fmt_time() (in module dantro.dag)

 	(in module dantro.data_mngr)

 	(in module dantro.plot.creators.base)

 	(in module dantro.plot_mngr)

 	_format_cls_name() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_format_info() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(Hdf5ProxySupportMixin method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(ProxySupportMixin method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_format_logstr() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_format_name() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_format_path() (AbstractDataAttrs method)

 	(AbstractDataContainer method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataContainer method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LinkContainer method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(TimeSeriesGroup method)

 	(XrDataContainer method)

 	_format_payload() (DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	(KeywordArgument method)

 	(Placeholder method)

 	(PlaceholderWithFallback method)

 	(PositionalArgument method)

 	(ResultPlaceholder method)

 	_format_shape() (XrDataContainer method)

 	_format_tree() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_format_tree_condensed() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_forward_attr_get_forwarding_target() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	_forward_attr_post_hook() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	_forward_attr_pre_hook() (ForwardAttrsMixin method)

 	(ForwardAttrsToDataMixin method)

 	(Link method)

 	(LinkContainer method)

 	(NumpyDataContainer method)

 	(PassthroughContainer method)

 	(PathContainer method)

 	(StringContainer method)

 	(StrongLink method)

 	(XrDataContainer method)

 	_from_original_yaml() (in module dantro._yaml)

 	_generate_DAG_vis() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_get_cont() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_get_coords_of() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_get_dag_params() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_get_data_at() (GraphGroup method)

 	_get_item_or_pmap() (GraphGroup method)

 	_get_module_from_file() (PlotFuncResolver method)

 	_get_module_via_import() (PlotFuncResolver method)

 	_get_plot_creator() (PlotManager method)

 	_get_plot_func() (PlotManager method)

 	_get_plot_func_resolver() (PlotManager method)

 	_get_positions() (in module dantro.plot.funcs.graph)

 	_GG_attr_directed (GraphGroup attribute)

 	_GG_attr_edge_container_is_transposed (GraphGroup attribute)

 	_GG_attr_keep_dim (GraphGroup attribute)

 	_GG_attr_parallel (GraphGroup attribute)

 	_GG_edge_container (GraphGroup attribute)

 	_GG_node_container (GraphGroup attribute)

 	_GG_WARN_UPON_BAD_ALIGN (GraphGroup attribute)

 	_group_from_h5group() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_handle_error_and_fallback() (Transformation method)

 	_handle_errors() (PlotHelper method)

 	_handle_exception() (PlotManager method)

 	_has_fallback (KeywordArgument attribute)

 	(PlaceholderWithFallback attribute)

 	(PositionalArgument attribute)

 	_hash() (in module dantro._hash)

 	_hashstr (Transformation attribute)

 	_HDF5_DECODE_ATTR_BYTESTRINGS (AllAvailableLoadersMixin attribute)

 	(Hdf5LoaderMixin attribute)

 	_HDF5_DSET_DEFAULT_CLS (AllAvailableLoadersMixin attribute)

 	(Hdf5LoaderMixin attribute)

 	_HDF5_DSET_MAP (AllAvailableLoadersMixin attribute)

 	(Hdf5LoaderMixin attribute)

 	_HDF5_GROUP_MAP (AllAvailableLoadersMixin attribute)

 	(Hdf5LoaderMixin attribute)

 	_HDF5_MAP_FROM_ATTR (AllAvailableLoadersMixin attribute)

 	(Hdf5LoaderMixin attribute)

 	_hlpr_align_labels() (PlotHelper method)

 	_hlpr_annotate() (PlotHelper method)

 	_hlpr_autofmt_xdate() (PlotHelper method)

 	_hlpr_call() (PlotHelper method)

 	_hlpr_despine() (PlotHelper method)

 	_hlpr_figcall() (PlotHelper method)

 	_hlpr_set_figlegend() (PlotHelper method)

 	_hlpr_set_hv_lines() (PlotHelper method)

 	_hlpr_set_labels() (PlotHelper method)

 	_hlpr_set_legend() (PlotHelper method)

 	_hlpr_set_limits() (PlotHelper method)

 	_hlpr_set_margins() (PlotHelper method)

 	_hlpr_set_scales() (PlotHelper method)

 	_hlpr_set_suptitle() (PlotHelper method)

 	_hlpr_set_texts() (PlotHelper method)

 	_hlpr_set_tick_formatters() (PlotHelper method)

 	_hlpr_set_tick_locators() (PlotHelper method)

 	_hlpr_set_ticks() (PlotHelper method)

 	_hlpr_set_title() (PlotHelper method)

 	_hlpr_subplots_adjust() (PlotHelper method)

 	_infer_pos_map() (ColorManager method)

 	_inherit_attrs() (XrDataContainer method)

 	_init_dirs() (DataManager method)

 	_invoke_helper() (PlotHelper method)

 	_invoke_plot_creation() (PlotManager method)

 	_invoke_plot_func() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_ipython_key_completions_() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_item_access_convert_list_key() (BaseDataAttrs method)

 	(ItemAccessMixin method)

 	(LinkContainer method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(NumpyDataContainer method)

 	(ObjectContainer method)

 	(PassthroughContainer method)

 	(StringContainer method)

 	(XrDataContainer method)

 	_key_comp_lt() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	_kwargs (Transformation attribute)

 	_layer (Transformation attribute)

 	_link_child() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_load() (DataManager method)

 	_load_file() (DataManager method)

 	_load_file_wrapper() (in module dantro.data_mngr)

 	_load_fspath() (AllAvailableLoadersMixin method)

 	(FSPathLoaderMixin method)

 	_load_fstree() (AllAvailableLoadersMixin method)

 	(FSPathLoaderMixin method)

 	_load_hdf5() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_load_hdf5_as_dask() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_load_hdf5_proxy() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_load_numpy() (AllAvailableLoadersMixin method)

 	(NumpyLoaderMixin method)

 	_load_numpy_binary() (AllAvailableLoadersMixin method)

 	(NumpyLoaderMixin method)

 	_load_numpy_txt() (AllAvailableLoadersMixin method)

 	(NumpyLoaderMixin method)

 	_load_pandas_csv() (AllAvailableLoadersMixin method)

 	(PandasLoaderMixin method)

 	_load_pandas_generic() (AllAvailableLoadersMixin method)

 	(PandasLoaderMixin method)

 	_load_pickle() (AllAvailableLoadersMixin method)

 	(PickleLoaderMixin method)

 	_load_plain_text() (AllAvailableLoadersMixin method)

 	(TextLoaderMixin method)

 	_load_xr_dataarray() (AllAvailableLoadersMixin method)

 	(XarrayLoaderMixin method)

 	_load_xr_dataset() (AllAvailableLoadersMixin method)

 	(XarrayLoaderMixin method)

 	_load_yaml() (AllAvailableLoadersMixin method)

 	(YamlLoaderMixin method)

 	_load_yaml_to_object() (AllAvailableLoadersMixin method)

 	(YamlLoaderMixin method)

 	_loader_registry (DataManager property)

 	_lock_hook() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LockDataMixin method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_log() (DantroLogger method)

 	_lookup_result() (Transformation method)

 	_lookup_result_from_file() (Transformation method)

 	_make_passthrough() (in module dantro.data_ops._base_ops)

 	_mc_opts (Transformation attribute)

 	_NEW_CONTAINER_CLS (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_NEW_GROUP_CLS (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_NORMS_NOT_SUPPORTING_VMIN_VMAX (ColorManager attribute)

 	_num_comparisons (IntOrderedDict property)

 	(KeyOrderedDict property)

 	_open_h5file() (Hdf5DataProxy method)

 	_operation (Transformation attribute)

 	_OVERWRITE (ContainerRegistry attribute)

 	(DataLoaderRegistry attribute)

 	(GroupRegistry attribute)

 	(ObjectRegistry attribute)

 	_PADDED_INT_FSTR (PaddedIntegerItemAccessMixin attribute)

 	(ParamSpaceGroup attribute)

 	_PADDED_INT_KEY_WIDTH (PaddedIntegerItemAccessMixin attribute)

 	(ParamSpaceGroup attribute)

 	_PADDED_INT_MAX_VAL (PaddedIntegerItemAccessMixin attribute)

 	(ParamSpaceGroup attribute)

 	_PADDED_INT_STRICT_CHECKING (PaddedIntegerItemAccessMixin attribute)

 	(ParamSpaceGroup attribute)

 	_parse_boundaries() (ColorManager method)

 	_parse_cbar_labels() (ColorManager method)

 	_parse_cmap_kwargs() (ColorManager method)

 	_parse_compute_only() (TransformationDAG method)

 	_parse_file_path() (DataManager method)

 	_parse_indexers() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_parse_key() (HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntegerItemAccessMixin method)

 	(PaddedIntegerItemAccessMixin method)

 	(ParamSpaceGroup method)

 	(TimeSeriesGroup method)

 	_parse_norm_kwargs() (ColorManager method)

 	_parse_out_dir() (PlotManager method)

 	_parse_out_path() (PlotManager method)

 	_parse_parallel_opts() (in module dantro.data_mngr)

 	_parse_sizes_from_metadata() (XrDataContainer method)

 	_parse_trfs() (TransformationDAG method)

 	_perform_animation() (MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_perform_data_selection() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_perform_operation() (Transformation method)

 	_plot() (PlotManager method)

 	_plot_with_helper() (MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_POSSIBLE_CMAP_KWARGS (ColorManager attribute)

 	_postprocess_proxy_resolution() (XrDataContainer method)

 	_prepare_cfg() (PlotManager static method)

 	_prepare_edge_data() (GraphGroup method)

 	_prepare_path() (AbstractPlotCreator method)

 	(BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_prepare_plot_func_args() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_prepare_property_data() (GraphGroup method)

 	_prepare_style_context() (MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_prepare_target_path() (DataManager method)

 	_process_cont() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_profile (Transformation attribute)

 	_PSPGRP_PSPACE_ATTR_NAME (ParamSpaceGroup attribute)

 	_PSPGRP_TRANSFORMATOR (ParamSpaceGroup attribute)

 	_raise_on_invalid_helper_name() (PlotHelper method)

 	_recursively_load_hdf5() (AllAvailableLoadersMixin method)

 	(Hdf5LoaderMixin method)

 	_REF_TYPE (Link attribute)

 	(StrongLink attribute)

 	_register_loader() (in module dantro.data_loaders._registry)

 	_register_via_decorator() (ContainerRegistry method)

 	(DataLoaderRegistry method)

 	(GroupRegistry method)

 	(ObjectRegistry method)

 	_resolve_based_on() (in module dantro.plot._cfg)

 	_resolve_loader() (DataManager method)

 	_resolve_path_list() (DataManager method)

 	_resolve_ref() (DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	_resolve_refs() (Transformation method)

 	_retained_proxy (Hdf5ProxySupportMixin attribute)

 	(ProxySupportMixin attribute)

 	_retrieve_from_cache_file() (TransformationDAG method)

 	_salt (Transformation attribute)

 	_save_plot_cfg() (PlotManager method)

 	_select() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_select_all_merge() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_select_generic() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_select_single() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	_set_condensed_tree_params() (DataManager method)

 	_setup_dag() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_shallowcopy() (in module dantro._copy)

 	_SKIP (ContainerRegistry attribute)

 	(DataLoaderRegistry attribute)

 	(GroupRegistry attribute)

 	(ObjectRegistry attribute)

 	_skip_path() (DataManager method)

 	_SNS_COLOR_PALETTE_PREFIX (ColorManager attribute)

 	_SNS_DIVERGING_PALETTE_PREFIX (ColorManager attribute)

 	_SPECIAL_CFG_KEYS (PlotHelper attribute)

 	_status (Transformation attribute)

 	_STORAGE_CLS (BaseDataGroup attribute)

 	(DataManager attribute)

 	(DirectoryGroup attribute)

 	(GraphGroup attribute)

 	(HeterogeneousTimeSeriesGroup attribute)

 	(IndexedDataGroup attribute)

 	(LabelledDataGroup attribute)

 	(OrderedDataGroup attribute)

 	(ParamSpaceGroup attribute)

 	(ParamSpaceStateGroup attribute)

 	(TimeSeriesGroup attribute)

 	_store_object() (DataManager method)

 	_store_plot_info() (PlotManager method)

 	_strongref (class in dantro.utils.link)

 	_tags (BaseDataProxy attribute)

 	(Hdf5DataProxy attribute)

 	_tree_repr() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_unlink_child() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_unlock_hook() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LockDataMixin method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	_update_profile() (Transformation method)

 	(TransformationDAG method)

 	_use_dag() (BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	_wiggle_pos() (in module dantro.plot.funcs.graph)

 	_write_to_cache_file() (TransformationDAG method)

 	_XR_PLOT_KINDS (in module dantro.plot.funcs.generic)

 	_XRC_COORDS_ATTR_PREFIX (XrDataContainer attribute)

 	_XRC_COORDS_MODE_ATTR_PREFIX (XrDataContainer attribute)

 	_XRC_COORDS_MODE_DEFAULT (XrDataContainer attribute)

 	_XRC_DIM_NAME_PREFIX (XrDataContainer attribute)

 	_XRC_DIMS_ATTR (XrDataContainer attribute)

 	_XRC_INHERIT_CONTAINER_ATTRIBUTES (XrDataContainer attribute)

 	_XRC_STRICT_ATTR_CHECKING (XrDataContainer attribute)

A

 	
 	AbstractDataAttrs (class in dantro.abc)

 	AbstractDataContainer (class in dantro.abc)

 	AbstractDataGroup (class in dantro.abc)

 	AbstractDataProxy (class in dantro.abc)

 	AbstractPlotCreator (class in dantro.abc)

 	add() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	add_base_cfg_pool() (PlotManager method)

 	add_loader() (in module dantro.data_loaders._registry)

 	add_node() (TransformationDAG method)

 	add_nodes() (TransformationDAG method)

 	add_object() (DAGObjects method)

 	added_sys_path (class in dantro._import_tools)

 	addFilter() (DantroLogger method)

 	addHandler() (DantroLogger method)

 	adjusted_log_levels (class in dantro.tools)

 	all_handles_labels (PlotHelper property)

 	ALL_PLOT_CREATORS (in module dantro.plot.creators)

 	AllAvailableLoadersMixin (class in dantro.data_loaders)

 	allow_deep_selection (HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	anchor_object (Link property)

 	(StrongLink property)

 	anchor_weakref (Link property)

 	(StrongLink property)

 	animation_enabled (PlotHelper property)

 	animation_update (PlotHelper property)

 	append() (MutableSequenceContainer method)

 	apply_along_axis() (in module dantro.data_ops.arr_ops)

 	apply_func_inplace() (in module dantro.mixins.numeric)

 	apply_func_to_copy() (in module dantro.mixins.numeric)

 	apply_operation() (in module dantro.data_ops.apply)

 	args (BadOperationName attribute)

 	(DAGError attribute)

 	(DantroError attribute)

 	(DantroMessagingException attribute)

 	(DantroWarning attribute)

 	(DataLoadingError attribute)

 	(DataManagerError attribute)

 	(DataOperationError attribute)

 	(DataOperationFailed attribute)

 	(DataOperationWarning attribute)

 	(EnterAnimationMode attribute)

 	(ExistingDataError attribute)

 	(ExistingDataWarning attribute)

 	(ExistingGroupError attribute)

 	(ExitAnimationMode attribute)

 	(InvalidCreator attribute)

 	(InvalidRegistryEntry attribute)

 	(ItemAccessError attribute)

 	(LoaderError attribute)

 	(MetaOperationError attribute)

 	(MetaOperationInvocationError attribute)

 	(MetaOperationSignatureError attribute)

 	(MissingDAGNode attribute)

 	(MissingDAGReference attribute)

 	(MissingDAGTag attribute)

 	(MissingDataError attribute)

 	(MissingDataWarning attribute)

 	(MissingNameError attribute)

 	(MissingRegistryEntry attribute)

 	(NoMatchWarning attribute)

 	(PlotConfigError attribute)

 	(PlotCreatorError attribute)

 	(PlotHelperError attribute)

 	(PlotHelperErrors attribute)

 	(PlottingError attribute)

 	(RegistryEntryExists attribute)

 	(RequiredDataMissingError attribute)

 	(SkipPlot attribute)

 	(UnexpectedTypeWarning attribute)

 	
 	as_dict() (BaseDataAttrs method)

 	attach_figure_and_axes() (PlotHelper method)

 	ATTR_MAPPER_OP_PREFIX (in module dantro.utils.nx)

 	ATTR_MAPPER_OP_PREFIX_DAG (in module dantro.utils.nx)

 	attrs (AttrsMixin property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(XrDataContainer property)

 	AttrsMixin (class in dantro.mixins.base)

 	available_helpers (PlotHelper property)

 	available_loaders (DataManager property)

 	available_operations() (in module dantro.data_ops.db_tools)

 	ax (PlotHelper property)

 	ax_coords (PlotHelper property)

 	axes (PlotHelper property)

 	axis_cfg (PlotHelper property)

 	axis_handles_labels (PlotHelper property)

 	axis_is_empty (PlotHelper property)

B

 	
 	BAD_NAME_CHARS (in module dantro.abc)

 	BAD_PLOT_NAME_CHARS (in module dantro.plot_mngr)

 	BadOperationName

 	base_cfg (PlotHelper property)

 	base_cfg_pools (PlotManager property)

 	BASE_PKG (PlotFuncResolver attribute)

 	BASE_PLOTS_CFG_PATH (in module dantro.plot_mngr)

 	
 	BaseDataAttrs (class in dantro.base)

 	BaseDataContainer (class in dantro.base)

 	BaseDataGroup (class in dantro.base)

 	BaseDataProxy (class in dantro.base)

 	BasePlotCreator (class in dantro.plot.creators.base)

 	BasicComparisonMixin (class in dantro.mixins.base)

 	BOOLEAN_OPERATORS (in module dantro.data_ops._base_ops)

 	build_object_array() (in module dantro.data_ops.arr_ops)

C

 	
 	cache_dir (TransformationDAG property)

 	cache_files (TransformationDAG property)

 	calculate_space_needed_hv() (in module dantro.plot.utils.mpl)

 	callHandlers() (DantroLogger method)

 	caution() (DantroLogger method)

 	center_in_line() (in module dantro.tools)

 	CheckDataMixin (class in dantro.mixins.base)

 	chunks (Hdf5DataProxy property)

 	(Hdf5ProxySupportMixin property)

 	classname (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(AbstractDataProxy property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(BaseDataProxy property)

 	(BasePlotCreator property)

 	(ContainerRegistry property)

 	(DataLoaderRegistry property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(GroupRegistry property)

 	(Hdf5DataProxy property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MultiversePlotCreator property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(ObjectRegistry property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(PyPlotCreator property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(UniversePlotCreator property)

 	(XrDataContainer property)

 	clear() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	clear_line() (in module dantro.tools)

 	close_figure() (PlotHelper method)

 	cmap (ColorManager property)

 	cmap_constructor() (in module dantro._yaml)

 	cmap_norm_constructor() (in module dantro._yaml)

 	CollectionMixin (class in dantro.mixins.base)

 	ColorManager (class in dantro.plot.utils.color_mngr)

 	ComparisonMixin (class in dantro.mixins.numeric)

 	compute() (Transformation method)

 	(TransformationDAG method)

 	ContainerRegistry (class in dantro.containers._registry)

 	CONTAINERS (in module dantro.containers._registry)

 	context (Transformation property)

 	convert_to_ref() (DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	coords (HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(ParamSpaceStateGroup property)

 	(TimeSeriesGroup property)

 	coords_iter() (PlotHelper method)

 	copy() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	(NumpyDataContainer method)

 	(XrDataContainer method)

 	copy_from_attr() (in module dantro.utils.nx)

 	count() (MutableSequenceContainer method)

 	count_unique() (in module dantro.data_ops.arr_ops)

 	create_cbar() (ColorManager method)

 	create_graph() (GraphGroup method)

 	create_mask() (in module dantro.data_ops.arr_ops)

 	CREATORS (PlotManager attribute)

 	critical() (DantroLogger method)

D

 	
 	dag (BasePlotCreator property)

 	(MultiversePlotCreator property)

 	(PyPlotCreator property)

 	(Transformation property)

 	(UniversePlotCreator property)

 	DAG_CACHE_CONTAINER_TYPES_TO_UNPACK (in module dantro.dag)

 	DAG_CACHE_DM_PATH (in module dantro.dag)

 	DAG_CACHE_RESULT_SAVE_FUNCS (in module dantro.dag)

 	DAG_INVOKE_IN_BASE (MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	DAG_PARSER_OPERATION_HOOKS (in module dantro.data_ops.hooks)

 	DAG_RESOLVE_PLACEHOLDERS (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	DAG_SUPPORTED (MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	DAG_TO_KWARG_MAPPING (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	DAG_USE_DEFAULT (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	DAGError

 	DAGMetaOperationTag (class in dantro._dag_utils)

 	DAGNode (class in dantro._dag_utils)

 	DAGObjects (class in dantro._dag_utils)

 	DAGReference (class in dantro._dag_utils)

 	DAGTag (class in dantro._dag_utils)

 	
 dantro

 	module

 	
 dantro._copy

 	module

 	
 dantro._dag_utils

 	module

 	
 dantro._hash

 	module

 	
 dantro._import_tools

 	module

 	
 dantro._registry

 	module

 	
 dantro._yaml

 	module

 	
 dantro.abc

 	module

 	
 dantro.base

 	module

 	
 dantro.containers

 	module

 	
 dantro.containers._registry

 	module

 	
 dantro.containers.general

 	module

 	
 dantro.containers.link

 	module

 	
 dantro.containers.numeric

 	module

 	
 dantro.containers.path

 	module

 	
 dantro.containers.xr

 	module

 	
 dantro.dag

 	module

 	
 dantro.data_loaders

 	module

 	
 dantro.data_loaders._registry

 	module

 	
 dantro.data_loaders.fspath

 	module

 	
 dantro.data_loaders.hdf5

 	module

 	
 dantro.data_loaders.numpy

 	module

 	
 dantro.data_loaders.pandas

 	module

 	
 dantro.data_loaders.pickle

 	module

 	
 dantro.data_loaders.text

 	module

 	
 dantro.data_loaders.xarray

 	module

 	
 dantro.data_loaders.yaml

 	module

 	
 dantro.data_mngr

 	module

 	
 dantro.data_ops

 	module

 	
 dantro.data_ops._base_ops

 	module

 	
 dantro.data_ops.apply

 	module

 	
 dantro.data_ops.arr_ops

 	module

 	
 dantro.data_ops.ctrl_ops

 	module

 	
 dantro.data_ops.db

 	module

 	
 dantro.data_ops.db_tools

 	module

 	
 dantro.data_ops.expr_ops

 	module

 	
 dantro.data_ops.hooks

 	module

 	
 dantro.exceptions

 	module

 	
 dantro.groups

 	module

 	
 dantro.groups._registry

 	module

 	
 dantro.groups.dirpath

 	module

 	
 dantro.groups.graph

 	module

 	
 dantro.groups.labelled

 	module

 	
 dantro.groups.ordered

 	module

 	
 dantro.groups.psp

 	module

 	
 dantro.groups.time_series

 	module

 	
 dantro.logging

 	module

 	
 dantro.mixins

 	module

 	
 dantro.mixins.base

 	module

 	
 dantro.mixins.general

 	module

 	
 dantro.mixins.indexing

 	module

 	
 dantro.mixins.numeric

 	module

 	
 dantro.mixins.proxy_support

 	module

 	
 dantro.plot

 	module

 	
 dantro.plot._cfg

 	module

 	
 dantro.plot.creators

 	module

 	
 dantro.plot.creators.base

 	module

 	
 dantro.plot.creators.psp

 	module

 	
 dantro.plot.creators.pyplot

 	module

 	
 dantro.plot.funcs

 	module

 	
 dantro.plot.funcs._multiplot

 	module

 	
 dantro.plot.funcs._utils

 	module

 	
 	
 dantro.plot.funcs.basic

 	module

 	
 dantro.plot.funcs.generic

 	module

 	
 dantro.plot.funcs.graph

 	module

 	
 dantro.plot.funcs.multiplot

 	module

 	
 dantro.plot.plot_helper

 	module

 	
 dantro.plot.utils

 	module

 	
 dantro.plot.utils._file_writer

 	module

 	
 dantro.plot.utils.color_mngr

 	module

 	
 dantro.plot.utils.mpl

 	module

 	
 dantro.plot.utils.plot_func

 	module

 	
 dantro.plot_mngr

 	module

 	
 dantro.proxy

 	module

 	
 dantro.proxy.hdf5

 	module

 	
 dantro.tools

 	module

 	
 dantro.utils

 	module

 	
 dantro.utils.coords

 	module

 	
 dantro.utils.link

 	module

 	
 dantro.utils.nx

 	module

 	
 dantro.utils.ordereddict

 	module

 	DantroError

 	DantroLogger (class in dantro.logging)

 	DantroMessagingException

 	DantroWarning

 	data (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(DAGMetaOperationTag property)

 	(DAGNode property)

 	(DAGReference property)

 	(DAGTag property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(Hdf5ProxySupportMixin property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(KeywordArgument property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(Placeholder property)

 	(PlaceholderWithFallback property)

 	(PositionalArgument property)

 	(ProxySupportMixin property)

 	(ResultPlaceholder property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(XrDataContainer property)

 	DATA_ALLOW_PROXY (CheckDataMixin attribute)

 	(Hdf5ProxySupportMixin attribute)

 	(LinkContainer attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(ProxySupportMixin attribute)

 	(StringContainer attribute)

 	(XrDataContainer attribute)

 	DATA_EXPECTED_TYPES (CheckDataMixin attribute)

 	(LinkContainer attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(StringContainer attribute)

 	(XrDataContainer attribute)

 	data_is_proxy (Hdf5ProxySupportMixin property)

 	(ProxySupportMixin property)

 	DATA_LOADERS (in module dantro.data_loaders._registry)

 	DATA_TREE_DUMP_EXT (in module dantro.data_mngr)

 	DATA_UNEXPECTED_ACTION (CheckDataMixin attribute)

 	(LinkContainer attribute)

 	(MutableMappingContainer attribute)

 	(MutableSequenceContainer attribute)

 	(NumpyDataContainer attribute)

 	(StringContainer attribute)

 	(XrDataContainer attribute)

 	DataLoaderRegistry (class in dantro.data_loaders._registry)

 	DataLoadingError

 	DataManager (class in dantro.data_mngr)

 	DataManagerError

 	DataOperationError

 	DataOperationFailed

 	DataOperationWarning

 	debug() (DantroLogger method)

 	decode_bytestrings() (in module dantro.tools)

 	default_creator (PlotManager property)

 	DEFAULT_DROP_KWARGS (make_facet_grid_plot attribute)

 	DEFAULT_ENCODINGS (make_facet_grid_plot attribute)

 	DEFAULT_EXT (BasePlotCreator attribute)

 	default_ext (BasePlotCreator property)

 	DEFAULT_EXT (MultiversePlotCreator attribute)

 	default_ext (MultiversePlotCreator property)

 	DEFAULT_EXT (PyPlotCreator attribute)

 	default_ext (PyPlotCreator property)

 	DEFAULT_EXT (UniversePlotCreator attribute)

 	default_ext (UniversePlotCreator property)

 	DEFAULT_EXT_REQUIRED (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	default_keep_dim (GraphGroup property)

 	DEFAULT_KEY_COMPARATOR() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	DEFAULT_OUT_FSTRS (PlotManager attribute)

 	dependencies (Transformation property)

 	desc (ContainerRegistry property)

 	(DataLoaderRegistry property)

 	(GroupRegistry property)

 	(ObjectRegistry property)

 	determine_encoding() (in module dantro.plot.funcs.generic)

 	determine_plot_kind() (in module dantro.plot.funcs.generic)

 	dims (HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	DirectInsertionModeMixin (class in dantro.mixins.base)

 	DirectoryGroup (class in dantro.groups.dirpath)

 	disable_animation() (PlotHelper method)

 	dm (BasePlotCreator property)

 	(MultiversePlotCreator property)

 	(PyPlotCreator property)

 	(TransformationDAG property)

 	(UniversePlotCreator property)

 	docstring (PlotHelperError property)

 	DoNothingContext (in module dantro.tools)

 	dtype (Hdf5DataProxy property)

 	(Hdf5ProxySupportMixin property)

 	dump() (DataManager method)

E

 	
 	edge_container (GraphGroup property)

 	enable_animation() (PlotHelper method)

 	enabled_figure_helpers (PlotHelper property)

 	enabled_helpers (PlotHelper property)

 	ensure_dict() (in module dantro.tools)

 	EnterAnimationMode

 	error() (DantroLogger method)

 	errorbars() (in module dantro.plot.funcs.generic)

 	errors (PlotHelperErrors property)

 	(PoolErrorCallbackHandler property)

 	exception() (DantroLogger method)

 	ExistingDataError

 	ExistingDataWarning

 	ExistingGroupError

 	
 	ExitAnimationMode

 	expand_dims() (in module dantro.data_ops.arr_ops)

 	expand_object_array() (in module dantro.data_ops.arr_ops)

 	export_graph() (in module dantro.utils.nx)

 	expression() (in module dantro.data_ops.expr_ops)

 	extend() (MutableSequenceContainer method)

 	EXTENSIONS (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	extract_coords() (in module dantro.utils.coords)

 	extract_coords_from_attrs() (in module dantro.utils.coords)

 	extract_coords_from_data() (in module dantro.utils.coords)

 	extract_coords_from_name() (in module dantro.utils.coords)

 	extract_dim_names() (in module dantro.utils.coords)

F

 	
 	facet_grid() (in module dantro.plot.funcs.generic)

 	fallback (KeywordArgument property)

 	(PlaceholderWithFallback property)

 	(PositionalArgument property)

 	fatal() (DantroLogger method)

 	fig (PlotHelper property)

 	figure_leak_prevention (class in dantro.plot.utils.mpl)

 	FileWriter (class in dantro.plot.utils._file_writer)

 	fill_line() (in module dantro.tools)

 	filter() (DantroLogger method)

 	findCaller() (DantroLogger method)

 	finish() (FileWriter method)

 	format_arguments() (in module dantro.utils.nx)

 	format_bytesize() (in module dantro.tools)

 	format_time() (in module dantro.tools)

 	FORWARD_ATTR_EXCLUDE (ForwardAttrsMixin attribute)

 	(ForwardAttrsToDataMixin attribute)

 	(Link attribute)

 	(LinkContainer attribute)

 	(NumpyDataContainer attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(StringContainer attribute)

 	(StrongLink attribute)

 	(XrDataContainer attribute)

 	FORWARD_ATTR_ONLY (ForwardAttrsMixin attribute)

 	(ForwardAttrsToDataMixin attribute)

 	(Link attribute)

 	(LinkContainer attribute)

 	(NumpyDataContainer attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(StringContainer attribute)

 	(StrongLink attribute)

 	(XrDataContainer attribute)

 	
 	FORWARD_ATTR_TO (ForwardAttrsMixin attribute)

 	(ForwardAttrsToDataMixin attribute)

 	(Link attribute)

 	(LinkContainer attribute)

 	(NumpyDataContainer attribute)

 	(PassthroughContainer attribute)

 	(PathContainer attribute)

 	(StringContainer attribute)

 	(StrongLink attribute)

 	(XrDataContainer attribute)

 	ForwardAttrsMixin (class in dantro.mixins.general)

 	ForwardAttrsToDataMixin (class in dantro.mixins.general)

 	frame_size (FileWriter property)

 	from_names() (DAGMetaOperationTag class method)

 	from_yaml() (DAGMetaOperationTag class method)

 	(DAGNode class method)

 	(DAGReference class method)

 	(DAGTag class method)

 	(KeywordArgument class method)

 	(Placeholder class method)

 	(PlaceholderWithFallback class method)

 	(PositionalArgument class method)

 	(ResultPlaceholder class method)

 	(Transformation class method)

 	fromkeys() (IntOrderedDict class method)

 	(KeyOrderedDict class method)

 	fs_path (DirectoryGroup property)

 	(PathContainer property)

 	FSPathLoaderMixin (class in dantro.data_loaders.fspath)

G

 	
 	gather_handles_labels() (in module dantro.plot.utils.mpl)

 	generate_lambda() (in module dantro.data_ops.expr_ops)

 	generate_nx_graph() (TransformationDAG method)

 	get() (AbstractDataAttrs method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	get_data() (in module dantro.mixins.numeric)

 	get_description() (in module dantro.utils.nx)

 	get_ext() (AbstractPlotCreator method)

 	(BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	get_from_module() (in module dantro._import_tools)

 	get_layer() (in module dantro.utils.nx)

 	get_meta_operation() (in module dantro.utils.nx)

 	get_operation() (in module dantro.data_ops.db_tools)

 	(in module dantro.utils.nx)

 	get_positions() (in module dantro.plot.funcs.graph)

 	get_status() (in module dantro.utils.nx)

 	getChild() (DantroLogger method)

 	getEffectiveLevel() (DantroLogger method)

 	glob_paths() (in module dantro.tools)

 	grab_frame() (FileWriter method)

 	GraphGroup (class in dantro.groups.graph)

 	GroupRegistry (class in dantro.groups._registry)

 	GROUPS (in module dantro.groups._registry)

H

 	
 	handle() (DantroLogger method)

 	has_fallback (KeywordArgument property)

 	(PlaceholderWithFallback property)

 	(PositionalArgument property)

 	has_result (Transformation property)

 	hasHandlers() (DantroLogger method)

 	hashstr (DataManager property)

 	(Transformation property)

 	(TransformationDAG property)

 	
 	Hdf5DataProxy (class in dantro.proxy.hdf5)

 	Hdf5LoaderMixin (class in dantro.data_loaders.hdf5)

 	Hdf5ProxySupportMixin (class in dantro.mixins.proxy_support)

 	HeterogeneousTimeSeriesGroup (class in dantro.groups.time_series)

 	hilight() (DantroLogger method)

I

 	
 	idx (DAGNode property)

 	import_module_from_file() (in module dantro._import_tools)

 	import_module_from_path() (in module dantro._import_tools)

 	import_module_or_object() (in module dantro._import_tools)

 	import_name() (in module dantro._import_tools)

 	index() (MutableSequenceContainer method)

 	IndexedDataGroup (class in dantro.groups.ordered)

 	info() (DantroLogger method)

 	INHERIT_BASED_ON_SAME_KEY (in module dantro.plot._cfg)

 	insert() (IntOrderedDict method)

 	(KeyOrderedDict method)

 	(MutableSequenceContainer method)

 	IntegerItemAccessMixin (class in dantro.mixins.indexing)

 	IntOrderedDict (class in dantro.utils.ordereddict)

 	InvalidCreator

 	InvalidRegistryEntry

 	invoke_before_grab (PlotHelper property)

 	invoke_enabled() (PlotHelper method)

 	invoke_helper() (PlotHelper method)

 	invoke_helpers() (PlotHelper method)

 	IS_A_TTY (in module dantro.tools)

 	is_container() (in module dantro.containers._registry)

 	is_group() (in module dantro.groups._registry)

 	is_hashable() (in module dantro.tools)

 	is_iterable() (in module dantro.tools)

 	is_operation() (in module dantro.data_ops.db_tools)

 	is_plot_func (class in dantro.plot.utils.plot_func)

 	isAvailable() (FileWriter class method)

 	
 	isel() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	isEnabledFor() (DantroLogger method)

 	ItemAccessError

 	ItemAccessMixin (class in dantro.mixins.base)

 	items() (AbstractDataAttrs method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(ContainerRegistry method)

 	(DAGObjects method)

 	(DataLoaderRegistry method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(GroupRegistry method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(ObjectRegistry method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

K

 	
 	keep_edge_attributes() (in module dantro.utils.nx)

 	keep_node_attributes() (in module dantro.utils.nx)

 	key_at_idx() (HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(ParamSpaceGroup method)

 	(TimeSeriesGroup method)

 	KeyOrderedDict (class in dantro.utils.ordereddict)

 	keys() (AbstractDataAttrs method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(ContainerRegistry method)

 	(DAGObjects method)

 	(DataLoaderRegistry method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(GroupRegistry method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(ObjectRegistry method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	keys_as_int() (HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(ParamSpaceGroup method)

 	(TimeSeriesGroup method)

 	KeywordArgument (class in dantro._dag_utils)

L

 	
 	LabelledDataGroup (class in dantro.groups.labelled)

 	labels (ColorManager property)

 	layer (Transformation property)

 	LazyLoader (class in dantro._import_tools)

 	LDG_ALLOW_DEEP_SELECTION (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_COORDS_ATTR_PREFIX (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_COORDS_MODE_ATTR_PREFIX (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_COORDS_MODE_DEFAULT (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_COORDS_SEPARATOR_IN_NAME (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_DIMS (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_EXTRACT_COORDS_FROM (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	LDG_STRICT_ATTR_CHECKING (HeterogeneousTimeSeriesGroup attribute)

 	(LabelledDataGroup attribute)

 	(TimeSeriesGroup attribute)

 	lineplot() (in module dantro.plot.funcs.basic)

 	Link (class in dantro.utils.link)

 	LinkContainer (class in dantro.containers.link)

 	load() (DataManager method)

 	load_from_cfg() (DataManager method)

 	LOAD_FUNC_PREFIX (in module dantro.data_loaders._registry)

 	LOADER_BY_FILE_EXT (in module dantro.data_loaders)

 	LoaderError

 	lock() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LockDataMixin method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	LockDataMixin (class in dantro.mixins.base)

 	locked (BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LockDataMixin property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(TimeSeriesGroup property)

 	log() (DantroLogger method)

 	logstr (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(BasePlotCreator property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MultiversePlotCreator property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(PyPlotCreator property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(UniversePlotCreator property)

 	(XrDataContainer property)

M

 	
 	make_columns() (in module dantro.tools)

 	make_facet_grid_plot (class in dantro.plot.funcs.generic)

 	make_name() (DAGMetaOperationTag class method)

 	makeRecord() (DantroLogger method)

 	manager (DantroLogger attribute)

 	manipulate_attributes() (in module dantro.utils.nx)

 	map_attributes() (in module dantro.utils.nx)

 	MAP_FUNCS (make_facet_grid_plot attribute)

 	map_to_color() (ColorManager method)

 	MappingAccessMixin (class in dantro.mixins.base)

 	mark_disabled() (PlotHelper method)

 	mark_enabled() (PlotHelper method)

 	member_map (HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	member_map_available (HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	merge() (in module dantro.data_ops.arr_ops)

 	meta_operations (TransformationDAG property)

 	MetaOperationError

 	MetaOperationInvocationError

 	MetaOperationSignatureError

 	MissingDAGNode

 	MissingDAGReference

 	MissingDAGTag

 	MissingDataError

 	MissingDataWarning

 	MissingNameError

 	MissingRegistryEntry

 	
 module

 	dantro

 	dantro._copy

 	dantro._dag_utils

 	dantro._hash

 	dantro._import_tools

 	dantro._registry

 	dantro._yaml

 	dantro.abc

 	dantro.base

 	dantro.containers

 	dantro.containers._registry

 	dantro.containers.general

 	dantro.containers.link

 	dantro.containers.numeric

 	dantro.containers.path

 	dantro.containers.xr

 	dantro.dag

 	dantro.data_loaders

 	dantro.data_loaders._registry

 	dantro.data_loaders.fspath

 	dantro.data_loaders.hdf5

 	dantro.data_loaders.numpy

 	dantro.data_loaders.pandas

 	dantro.data_loaders.pickle

 	dantro.data_loaders.text

 	dantro.data_loaders.xarray

 	dantro.data_loaders.yaml

 	dantro.data_mngr

 	dantro.data_ops

 	dantro.data_ops._base_ops

 	dantro.data_ops.apply

 	dantro.data_ops.arr_ops

 	dantro.data_ops.ctrl_ops

 	dantro.data_ops.db

 	dantro.data_ops.db_tools

 	dantro.data_ops.expr_ops

 	dantro.data_ops.hooks

 	dantro.exceptions

 	dantro.groups

 	dantro.groups._registry

 	dantro.groups.dirpath

 	dantro.groups.graph

 	dantro.groups.labelled

 	dantro.groups.ordered

 	dantro.groups.psp

 	dantro.groups.time_series

 	dantro.logging

 	dantro.mixins

 	dantro.mixins.base

 	dantro.mixins.general

 	dantro.mixins.indexing

 	dantro.mixins.numeric

 	dantro.mixins.proxy_support

 	dantro.plot

 	dantro.plot._cfg

 	dantro.plot.creators

 	dantro.plot.creators.base

 	dantro.plot.creators.psp

 	dantro.plot.creators.pyplot

 	dantro.plot.funcs

 	dantro.plot.funcs._multiplot

 	dantro.plot.funcs._utils

 	dantro.plot.funcs.basic

 	dantro.plot.funcs.generic

 	dantro.plot.funcs.graph

 	dantro.plot.funcs.multiplot

 	dantro.plot.plot_helper

 	dantro.plot.utils

 	dantro.plot.utils._file_writer

 	dantro.plot.utils.color_mngr

 	dantro.plot.utils.mpl

 	dantro.plot.utils.plot_func

 	dantro.plot_mngr

 	dantro.proxy

 	dantro.proxy.hdf5

 	dantro.tools

 	dantro.utils

 	dantro.utils.coords

 	dantro.utils.link

 	dantro.utils.nx

 	dantro.utils.ordereddict

 	
 	multi_concat() (in module dantro.data_ops.arr_ops)

 	multiplot() (in module dantro.plot.funcs.multiplot)

 	MULTIPLOT_CAUTION_FUNC_NAMES (in module dantro.plot.funcs._multiplot)

 	MULTIPLOT_FUNC_KINDS (in module dantro.plot.funcs._multiplot)

 	MultiversePlotCreator (class in dantro.plot.creators.psp)

 	MutableMappingContainer (class in dantro.containers.general)

 	MutableSequenceContainer (class in dantro.containers.general)

N

 	
 	name (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(BasePlotCreator property)

 	(DAGMetaOperationTag property)

 	(DAGTag property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(KeywordArgument property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MultiversePlotCreator property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(PyPlotCreator property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(UniversePlotCreator property)

 	(XrDataContainer property)

 	ndim (Hdf5DataProxy property)

 	(Hdf5ProxySupportMixin property)

 	(HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	
 	new_container() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	new_group() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	NODE_ATTR_DEFAULT_MAPPERS (TransformationDAG attribute)

 	node_container (GraphGroup property)

 	nodes (TransformationDAG property)

 	NoMatchWarning

 	norm (ColorManager property)

 	NORMS (in module dantro.plot.utils.color_mngr)

 	note() (DantroLogger method)

 	NumbersMixin (class in dantro.mixins.numeric)

 	NumpyDataContainer (class in dantro.containers.numeric)

 	NumpyLoaderMixin (class in dantro.data_loaders.numpy)

O

 	
 	ObjectContainer (class in dantro.containers.general)

 	ObjectRegistry (class in dantro._registry)

 	objects (TransformationDAG property)

 	only_default_data_present (ParamSpaceGroup property)

 	op_hook_expression() (in module dantro.data_ops.hooks)

 	operation (Transformation property)

 	
 	OrderedDataGroup (class in dantro.groups.ordered)

 	out_fstrs (PlotManager property)

 	out_path (PlotHelper property)

 	OUT_PATH_EXIST_OK (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

P

 	
 	padded_int_key_width (PaddedIntegerItemAccessMixin property)

 	(ParamSpaceGroup property)

 	PaddedIntegerItemAccessMixin (class in dantro.mixins.indexing)

 	PandasLoaderMixin (class in dantro.data_loaders.pandas)

 	ParamSpaceGroup (class in dantro.groups.psp)

 	ParamSpaceStateGroup (class in dantro.groups.psp)

 	parent (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(XrDataContainer property)

 	parse_and_invoke_function() (in module dantro.plot.funcs._multiplot)

 	parse_cmap_and_norm_kwargs() (in module dantro.plot.utils.color_mngr)

 	parse_dag_minimal_syntax() (in module dantro._dag_utils)

 	parse_dag_syntax() (in module dantro._dag_utils)

 	parse_function_specs() (in module dantro.plot.funcs._multiplot)

 	parse_str_to_args_and_kwargs() (in module dantro.tools)

 	parse_wpf_kwargs() (make_facet_grid_plot method)

 	PassthroughContainer (class in dantro.containers.general)

 	path (AbstractDataAttrs property)

 	(AbstractDataContainer property)

 	(AbstractDataGroup property)

 	(BaseDataAttrs property)

 	(BaseDataContainer property)

 	(BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(LinkContainer property)

 	(MutableMappingContainer property)

 	(MutableSequenceContainer property)

 	(NumpyDataContainer property)

 	(ObjectContainer property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(PassthroughContainer property)

 	(PathContainer property)

 	(StringContainer property)

 	(TimeSeriesGroup property)

 	(XrDataContainer property)

 	PATH_JOIN_CHAR (in module dantro.abc)

 	PathContainer (class in dantro.containers.path)

 	PAYLOAD_DESC (DAGMetaOperationTag attribute)

 	(DAGNode attribute)

 	(DAGReference attribute)

 	(DAGTag attribute)

 	(KeywordArgument attribute)

 	(Placeholder attribute)

 	(PlaceholderWithFallback attribute)

 	(PositionalArgument attribute)

 	(ResultPlaceholder attribute)

 	PickleLoaderMixin (class in dantro.data_loaders.pickle)

 	Placeholder (class in dantro._dag_utils)

 	PlaceholderWithFallback (class in dantro._dag_utils)

 	plot() (AbstractPlotCreator method)

 	(BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PlotManager method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	plot_cfg (BasePlotCreator property)

 	(MultiversePlotCreator property)

 	(PyPlotCreator property)

 	(UniversePlotCreator property)

 	plot_errorbar() (in module dantro.plot.funcs._utils)

 	plot_from_cfg() (PlotManager method)

 	plot_func (BasePlotCreator property)

 	(MultiversePlotCreator property)

 	(PyPlotCreator property)

 	(UniversePlotCreator property)

 	
 	plot_func_name (BasePlotCreator property)

 	(MultiversePlotCreator property)

 	(PyPlotCreator property)

 	(UniversePlotCreator property)

 	PLOT_FUNC_RESOLVER (PlotManager attribute)

 	PLOT_HELPER_CLS (MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	plot_info (PlotManager property)

 	PlotConfigError

 	PlotCreatorError

 	PlotFuncResolver (class in dantro.plot.utils.plot_func)

 	PlotHelper (class in dantro.plot.plot_helper)

 	PlotHelperError

 	PlotHelperErrors

 	PlotManager (class in dantro.plot_mngr)

 	PlottingError

 	PoolCallbackHandler (class in dantro.tools)

 	PoolErrorCallbackHandler (class in dantro.tools)

 	pop() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MutableMappingContainer method)

 	(MutableSequenceContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	popitem() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MutableMappingContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	populate_ndarray() (in module dantro.data_ops.arr_ops)

 	position (PositionalArgument property)

 	PositionalArgument (class in dantro._dag_utils)

 	POSTPONE_PATH_PREPARATION (BasePlotCreator attribute)

 	(MultiversePlotCreator attribute)

 	(PyPlotCreator attribute)

 	(UniversePlotCreator attribute)

 	prepare_cfg() (AbstractPlotCreator method)

 	(BasePlotCreator method)

 	(MultiversePlotCreator method)

 	(PyPlotCreator method)

 	(UniversePlotCreator method)

 	prepare_legend_args() (in module dantro.plot.utils.mpl)

 	previous_DAGNode() (in module dantro._yaml)

 	print_data() (in module dantro.data_ops.ctrl_ops)

 	print_line() (in module dantro.tools)

 	profile (Transformation property)

 	(TransformationDAG property)

 	profile_extended (TransformationDAG property)

 	progress() (DantroLogger method)

 	property_maps (GraphGroup property)

 	provide_defaults() (PlotHelper method)

 	proxy (Hdf5ProxySupportMixin property)

 	(ProxySupportMixin property)

 	PROXY_REINSTATE_FAIL_ACTION (Hdf5ProxySupportMixin attribute)

 	(ProxySupportMixin attribute)

 	PROXY_REINSTATE_FOR_PICKLING (Hdf5ProxySupportMixin attribute)

 	(ProxySupportMixin attribute)

 	PROXY_RESOLVE_ASTYPE (Hdf5ProxySupportMixin attribute)

 	(ProxySupportMixin attribute)

 	PROXY_RETAIN (Hdf5ProxySupportMixin attribute)

 	(ProxySupportMixin attribute)

 	ProxySupportMixin (class in dantro.mixins.proxy_support)

 	psgrp (MultiversePlotCreator property)

 	(UniversePlotCreator property)

 	PSGRP_PATH (MultiversePlotCreator attribute)

 	(UniversePlotCreator attribute)

 	pspace (ParamSpaceGroup property)

 	PyPlotCreator (class in dantro.plot.creators.pyplot)

R

 	
 	raise_if_locked() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LockDataMixin method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	raise_on_error (PlotHelper property)

 	raise_SkipPlot() (in module dantro.data_ops.ctrl_ops)

 	recursive_getitem() (in module dantro.tools)

 	recursive_update() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(in module dantro.tools)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	ref (DAGMetaOperationTag property)

 	(DAGNode property)

 	(DAGReference property)

 	(DAGTag property)

 	ref_stacks (TransformationDAG property)

 	register() (ContainerRegistry method)

 	(DataLoaderRegistry method)

 	(GroupRegistry method)

 	(ObjectRegistry method)

 	
 	register_animation_update() (PlotHelper method)

 	register_container() (in module dantro.containers._registry)

 	register_group() (in module dantro.groups._registry)

 	register_meta_operation() (TransformationDAG method)

 	register_operation() (in module dantro.data_ops.db_tools)

 	register_property_map() (GraphGroup method)

 	RegistryEntryExists

 	reinstate_proxy() (Hdf5ProxySupportMixin method)

 	(ProxySupportMixin method)

 	remark() (DantroLogger method)

 	remove() (MutableSequenceContainer method)

 	remove_duplicate_handles_labels() (in module dantro.plot.utils.mpl)

 	remove_from_sys_modules() (in module dantro._import_tools)

 	removeFilter() (DantroLogger method)

 	removeHandler() (DantroLogger method)

 	RequiredDataMissingError

 	resolve() (AbstractDataProxy method)

 	(BaseDataProxy method)

 	(Hdf5DataProxy method)

 	(LazyLoader method)

 	(PlotFuncResolver method)

 	resolve_based_on() (in module dantro.plot._cfg)

 	resolve_based_on_single() (in module dantro.plot._cfg)

 	resolve_lazy_imports() (in module dantro._import_tools)

 	resolve_object() (DAGMetaOperationTag method)

 	(DAGNode method)

 	(DAGReference method)

 	(DAGTag method)

 	resolve_placeholders() (in module dantro._dag_utils)

 	resolve_plot_cfgs_shortcuts() (in module dantro.plot._cfg)

 	resolve_types() (in module dantro._import_tools)

 	resolved_dependencies (Transformation property)

 	restore() (DataManager method)

 	result_name (ResultPlaceholder property)

 	ResultPlaceholder (class in dantro._dag_utils)

 	reverse() (MutableSequenceContainer method)

 	root (DantroLogger attribute)

S

 	
 	save() (NumpyDataContainer method)

 	(XrDataContainer method)

 	save_figure() (PlotHelper method)

 	saving() (FileWriter method)

 	scatter3d() (in module dantro.plot.funcs.generic)

 	sel() (HeterogeneousTimeSeriesGroup method)

 	(LabelledDataGroup method)

 	(TimeSeriesGroup method)

 	select() (ParamSpaceGroup method)

 	select_axis() (PlotHelper method)

 	select_base (TransformationDAG property)

 	set_edge_property() (GraphGroup method)

 	set_node_property() (GraphGroup method)

 	set_tick_locators_or_formatters() (in module dantro.plot.utils.mpl)

 	set_value() (in module dantro.utils.nx)

 	setdefault() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MutableMappingContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	setLevel() (DantroLogger method)

 	setup() (FileWriter method)

 	setup_figure() (PlotHelper method)

 	shape (Hdf5DataProxy property)

 	(Hdf5ProxySupportMixin property)

 	(HeterogeneousTimeSeriesGroup property)

 	(LabelledDataGroup property)

 	(TimeSeriesGroup property)

 	size (Hdf5DataProxy property)

 	(Hdf5ProxySupportMixin property)

 	SizeOfMixin (class in dantro.mixins.base)

 	SkipPlot

 	SPECIAL_BASE_CFG_POOL_LABELS (PlotManager attribute)

 	SPECIAL_TAGS (TransformationDAG attribute)

 	SPLIT_STR (DAGMetaOperationTag attribute)

 	status (Transformation property)

 	StringContainer (class in dantro.containers.general)

 	StrongLink (class in dantro.utils.link)

 	success() (DantroLogger method)

T

 	
 	tags (AbstractDataProxy property)

 	(BaseDataProxy property)

 	(Hdf5DataProxy property)

 	(TransformationDAG property)

 	target_object (Link property)

 	(StrongLink property)

 	target_rel_path (Link property)

 	(StrongLink property)

 	target_weakref (Link property)

 	(StrongLink property)

 	TCoord (in module dantro.utils.coords)

 	TCoords (in module dantro.utils.coords)

 	TCoordsDict (in module dantro.utils.coords)

 	TDims (in module dantro.utils.coords)

 	temporarily_changed_axis (class in dantro.plot.plot_helper)

 	temporary_sys_modules (class in dantro._import_tools)

 	TERMINAL_INFO (in module dantro.tools)

 	TextLoaderMixin (class in dantro.data_loaders.text)

 	TimeSeriesGroup (class in dantro.groups.time_series)

 	to_yaml() (DAGMetaOperationTag class method)

 	(DAGNode class method)

 	(DAGReference class method)

 	(DAGTag class method)

 	(KeywordArgument class method)

 	(Placeholder class method)

 	(PlaceholderWithFallback class method)

 	(PositionalArgument class method)

 	(ResultPlaceholder class method)

 	(Transformation class method)

 	total_bytesize() (in module dantro.tools)

 	trace() (DantroLogger method)

 	
 	track_error() (PoolErrorCallbackHandler method)

 	track_handles_labels() (PlotHelper method)

 	transform_coords() (in module dantro.data_ops.arr_ops)

 	Transformation (class in dantro.dag)

 	TransformationDAG (class in dantro.dag)

 	tree (BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(TimeSeriesGroup property)

 	tree_cache_exists (DataManager property)

 	tree_cache_path (DataManager property)

 	tree_condensed (BaseDataGroup property)

 	(DataManager property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(TimeSeriesGroup property)

 	try_conversion() (in module dantro.tools)

 	TTY_COLS (in module dantro.tools)

U

 	
 	UnaryOperationsMixin (class in dantro.mixins.numeric)

 	UnexpectedTypeWarning

 	UniversePlotCreator (class in dantro.plot.creators.psp)

 	unlock() (BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(LabelledDataGroup method)

 	(LockDataMixin method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	update() (AbstractDataGroup method)

 	(BaseDataGroup method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MutableMappingContainer method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	update_terminal_info() (in module dantro.tools)

V

 	
 	values() (AbstractDataAttrs method)

 	(AbstractDataGroup method)

 	(BaseDataAttrs method)

 	(BaseDataGroup method)

 	(ContainerRegistry method)

 	(DAGObjects method)

 	(DataLoaderRegistry method)

 	(DataManager method)

 	(DirectoryGroup method)

 	(GraphGroup method)

 	(GroupRegistry method)

 	(HeterogeneousTimeSeriesGroup method)

 	(IndexedDataGroup method)

 	(IntOrderedDict method)

 	(KeyOrderedDict method)

 	(LabelledDataGroup method)

 	(MappingAccessMixin method)

 	(MutableMappingContainer method)

 	(ObjectRegistry method)

 	(OrderedDataGroup method)

 	(ParamSpaceGroup method)

 	(ParamSpaceStateGroup method)

 	(TimeSeriesGroup method)

 	
 	visualize() (TransformationDAG method)

 	vmax (ColorManager property)

 	vmin (ColorManager property)

W

 	
 	warn() (DantroLogger method)

 	warning() (DantroLogger method)

 	where() (in module dantro.data_ops.arr_ops)

 	with_direct_insertion (BaseDataGroup property)

 	(DataManager property)

 	(DirectInsertionModeMixin property)

 	(DirectoryGroup property)

 	(GraphGroup property)

 	(HeterogeneousTimeSeriesGroup property)

 	(IndexedDataGroup property)

 	(LabelledDataGroup property)

 	(OrderedDataGroup property)

 	(ParamSpaceGroup property)

 	(ParamSpaceStateGroup property)

 	(TimeSeriesGroup property)

 	with_traceback() (BadOperationName method)

 	(DAGError method)

 	(DantroError method)

 	(DantroMessagingException method)

 	(DantroWarning method)

 	(DataLoadingError method)

 	(DataManagerError method)

 	(DataOperationError method)

 	(DataOperationFailed method)

 	(DataOperationWarning method)

 	(EnterAnimationMode method)

 	(ExistingDataError method)

 	(ExistingDataWarning method)

 	(ExistingGroupError method)

 	(ExitAnimationMode method)

 	(InvalidCreator method)

 	(InvalidRegistryEntry method)

 	(ItemAccessError method)

 	(LoaderError method)

 	(MetaOperationError method)

 	(MetaOperationInvocationError method)

 	(MetaOperationSignatureError method)

 	(MissingDAGNode method)

 	(MissingDAGReference method)

 	(MissingDAGTag method)

 	(MissingDataError method)

 	(MissingDataWarning method)

 	(MissingNameError method)

 	(MissingRegistryEntry method)

 	(NoMatchWarning method)

 	(PlotConfigError method)

 	(PlotCreatorError method)

 	(PlotHelperError method)

 	(PlotHelperErrors method)

 	(PlottingError method)

 	(RegistryEntryExists method)

 	(RequiredDataMissingError method)

 	(SkipPlot method)

 	(UnexpectedTypeWarning method)

X

 	
 	XarrayLoaderMixin (class in dantro.data_loaders.xarray)

 	
 	XrDataContainer (class in dantro.containers.xr)

Y

 	
 	yaml_tag (DAGMetaOperationTag attribute)

 	(DAGNode attribute)

 	(DAGReference attribute)

 	(DAGTag attribute)

 	(KeywordArgument attribute)

 	(Placeholder attribute)

 	(PlaceholderWithFallback attribute)

 	(PositionalArgument attribute)

 	(ResultPlaceholder attribute)

 	(Transformation attribute)

 	
 	YamlLoaderMixin (class in dantro.data_loaders.yaml)

 _static/icon_green.png

_static/file.png

_static/minus.png

_static/plus.png

_static/img/icon_green.png

nav.xhtml

 Table of Contents

 		
 Welcome to dantro’s documentation!

_static/img/logo_green.png
antro
d
N

